TY - JOUR
T1 - Regional and cellular distribution of mitochondrial ferritin in the mouse brain
AU - Snyder, Amanda
AU - Neely, Elizabeth B.
AU - Levi, Sonia
AU - Arosio, Paolo
AU - Connor, James
PY - 2010/11/1
Y1 - 2010/11/1
N2 - Iron and mitochondrial dysfunction are important in many neurodegenerative diseases. Several iron transport proteins have been identified that are associated with mitochondria, most recently mitochondrial ferritin. Here we describe the cellular distribution of mitochondrial ferritin in multiple regions of the brain in C57/BL6 mice. Mitochondrial ferritin was found in all regions of the brain, although staining intensity varied between regions. Mitochondrial ferritin was detected throughout the layers of cerebral cortex and in the cerebellum, hippocampus, striatum, choroid plexus, and ependymal cells. The cell type in the brain that stains most prominently for mitochondrial ferritin is neuronal, but oligodendrocytes also stain strongly in both gray matter and in white matter tracts. Mice deficient in H-ferritin do not differ in the mitochondrial ferritin staining pattern or intensity compared with C57/BL6 mice, suggesting that there is no compensatory expression of these proteins. In addition, by using inbred mouse strains with differing levels of iron content, we have shown that regional brain iron content does not affect expression of mitochondria ferritin. The expression of mitochondria ferritin appears to be more influenced by mitochondrial density. Indeed, at an intracellular level, mitochondrial ferritin immunoreaction product is strongest where mitochondrial density is high, as seen in the ependymal cells. Given the importance and relationship between iron and mitochondrial activity, understanding the role of mitochondrial ferritin can be expected to contribute to our knowledge of mitochondrial dysfunction and neurodegenerative disease.
AB - Iron and mitochondrial dysfunction are important in many neurodegenerative diseases. Several iron transport proteins have been identified that are associated with mitochondria, most recently mitochondrial ferritin. Here we describe the cellular distribution of mitochondrial ferritin in multiple regions of the brain in C57/BL6 mice. Mitochondrial ferritin was found in all regions of the brain, although staining intensity varied between regions. Mitochondrial ferritin was detected throughout the layers of cerebral cortex and in the cerebellum, hippocampus, striatum, choroid plexus, and ependymal cells. The cell type in the brain that stains most prominently for mitochondrial ferritin is neuronal, but oligodendrocytes also stain strongly in both gray matter and in white matter tracts. Mice deficient in H-ferritin do not differ in the mitochondrial ferritin staining pattern or intensity compared with C57/BL6 mice, suggesting that there is no compensatory expression of these proteins. In addition, by using inbred mouse strains with differing levels of iron content, we have shown that regional brain iron content does not affect expression of mitochondria ferritin. The expression of mitochondria ferritin appears to be more influenced by mitochondrial density. Indeed, at an intracellular level, mitochondrial ferritin immunoreaction product is strongest where mitochondrial density is high, as seen in the ependymal cells. Given the importance and relationship between iron and mitochondrial activity, understanding the role of mitochondrial ferritin can be expected to contribute to our knowledge of mitochondrial dysfunction and neurodegenerative disease.
UR - http://www.scopus.com/inward/record.url?scp=78149288408&partnerID=8YFLogxK
UR - http://www.scopus.com/inward/citedby.url?scp=78149288408&partnerID=8YFLogxK
U2 - 10.1002/jnr.22462
DO - 10.1002/jnr.22462
M3 - Article
C2 - 20722075
AN - SCOPUS:78149288408
SN - 0360-4012
VL - 88
SP - 3133
EP - 3143
JO - Journal of Neuroscience Research
JF - Journal of Neuroscience Research
IS - 14
ER -