TY - JOUR
T1 - Regional climates in the GISS global circulation model
T2 - Synoptic-scale circulation
AU - Hewitson, B.
AU - Crane, R. G.
N1 - Copyright:
Copyright 2017 Elsevier B.V., All rights reserved.
PY - 1992
Y1 - 1992
N2 - Model simulations of global climate change are seen as an essential component of any program aimed at understanding human impact on the global environment. A major weakness of current general circulation models (GCMs), however, is their perceived inability to predict reliably the regional consequences of a global-scale change, and it is these regional-scale predictions that are necessary for studies of human-environmental response. For large areas of the extratropics, the local climate is controlled by the synoptic-scale atmospheric circulation, and it is the purpose of this paper to evaluate the synoptic-scale circulation of the Goddard Institute for Space Studies (GISS) GCM. A methodology for validating the daily synoptic circulation using Principal Component Analysis (PCA) is described, and the methodology is then applied to the GCM simulation of sea level pressure over the continental United States (excluding Alaska). The analysis demonstrates that the GISS 4o × 5o GCM Model II effectively simulates the synoptic-scale atmospheric circulation over the United States. The modes of variance describing the atmospheric circulation of the model are comparable to those found in the observed data, and these modes explain similar amounts of variance in their respective datasets. The temporal behavior of these circulation modes in the synoptic time frame are also comparable.
AB - Model simulations of global climate change are seen as an essential component of any program aimed at understanding human impact on the global environment. A major weakness of current general circulation models (GCMs), however, is their perceived inability to predict reliably the regional consequences of a global-scale change, and it is these regional-scale predictions that are necessary for studies of human-environmental response. For large areas of the extratropics, the local climate is controlled by the synoptic-scale atmospheric circulation, and it is the purpose of this paper to evaluate the synoptic-scale circulation of the Goddard Institute for Space Studies (GISS) GCM. A methodology for validating the daily synoptic circulation using Principal Component Analysis (PCA) is described, and the methodology is then applied to the GCM simulation of sea level pressure over the continental United States (excluding Alaska). The analysis demonstrates that the GISS 4o × 5o GCM Model II effectively simulates the synoptic-scale atmospheric circulation over the United States. The modes of variance describing the atmospheric circulation of the model are comparable to those found in the observed data, and these modes explain similar amounts of variance in their respective datasets. The temporal behavior of these circulation modes in the synoptic time frame are also comparable.
UR - http://www.scopus.com/inward/record.url?scp=0001330068&partnerID=8YFLogxK
UR - http://www.scopus.com/inward/citedby.url?scp=0001330068&partnerID=8YFLogxK
U2 - 10.1175/1520-0442(1992)005<1002:RCITGG>2.0.CO;2
DO - 10.1175/1520-0442(1992)005<1002:RCITGG>2.0.CO;2
M3 - Article
AN - SCOPUS:0001330068
SN - 0894-8755
VL - 5
SP - 1002
EP - 1011
JO - Journal of Climate
JF - Journal of Climate
IS - 9
ER -