Abstract
miR-30d has been observed to be significantly down-regulated in human anaplastic thyroid carcinoma (ATC), and is believed to be an important event in thyroid cell transformation. In this study, we found that miR-30d has a critical role in modulating sensitivity of ATC cells to cisplatin, a commonly used chemotherapeutic drug for treatment of this neoplasm. Using a mimic of miR-30d, we demonstrated that miR-30d could negatively regulate the expression of beclin 1, a key autophagy gene, leading to suppression of the cisplatin-activated autophagic response that protects ATC cells from apoptosis. A reporter gene assay demonstrated that the binding sequences of miR-30d in the beclin 1-3′ UTR was the region required for the inhibition of beclin 1 expression by this miRNA. We further showed that inhibition of the beclin 1-mediated autophagy by the miR-30d mimic sensitized ATC cells to cisplatin both in vitro (cell culture) and in vivo (animal xenograft model). These results suggest that dysregulation of miR-30d in ATC cells is responsible for the insensitivity to cisplatin by promoting autophagic survival. Thus, miR-30d may be exploited as a potential target for therapeutic intervention in the treatment of ATC.
Original language | English (US) |
---|---|
Pages (from-to) | 562-570 |
Number of pages | 9 |
Journal | Biochemical Pharmacology |
Volume | 87 |
Issue number | 4 |
DOIs | |
State | Published - Feb 15 2014 |
All Science Journal Classification (ASJC) codes
- Biochemistry
- Pharmacology