Abstract
Interactions between the N-terminal (assembly) domain (NTD), the linker region of the hepatitis B virus (HBV) capsid protein, and the large (L) envelope protein are required for virion formation, which occurs via budding of cytoplasmic mature nucleocapsids (NCs) containing the relaxed circular (RC) DNA genome into an intracellular membrane compartment containing viral envelope proteins. L-capsid interactions also negatively regulate covalently closed circular (CCC) DNA formation, which occurs after RC DNA release from mature NCs and nuclear import. We have now found that L could increase RC DNA in cytoplasmic mature NCs that are destabilized due to mutations in the NTD or the linker, even in those that apparently fail to support secretion of complete virions extracellularly. Other mutations in the capsid linker could block the effects of L on both cytoplasmic NC DNA and nuclear CCC DNA. Furthermore, the maturity of RC DNA in cytoplasmic NCs that was enhanced by L or found in secreted virions was modulated by the capsid linker sequence. The level and maturity of the cytoplasmic RC DNA were further influenced by the efficiency of extracellular virion secretion dependent on viral genotype-specific envelope proteins. These results suggest that interactions between the capsid and envelope proteins regulate one or more steps during virion secretion beyond initial capsid envelopment and highlight the critical role of the capsid linker in regulating capsid-envelope interaction, including the timing of envelopment during NC maturation.
Original language | English (US) |
---|---|
Article number | e01305-21 |
Journal | Journal of virology |
Volume | 96 |
Issue number | 1 |
DOIs | |
State | Published - Jan 2022 |
All Science Journal Classification (ASJC) codes
- Microbiology
- Immunology
- Insect Science
- Virology