TY - JOUR
T1 - Regulation of human T-cell leukemia virus type 1 gene expression by Sp1 and Sp3 interaction with TRE-1 repeat III
AU - Yao, Jing
AU - Grant, Christian
AU - Harhaj, Edward
AU - Nonnemacher, Michael
AU - Alefantis, Timothy
AU - Martin, Joel
AU - Jain, Pooja
AU - Wigdahl, Brian
PY - 2006/5
Y1 - 2006/5
N2 - Transcription factors of the Sp family are known to play key roles in the regulation of both constitutive as well as cell type- and differentiation stage-specific gene expression. Binding sites for factors of the Sp family (Sp1 and Sp3) have previously been identified within the U3 region of the human T-cell leukemia virus type 1 (HTLV-1) long terminal repeat (LTR). Although previous studies have demonstrated that Sp1 and Sp3 can interact with the Tax-responsive element 1 (TRE-1) repeat III, the sequences required for Sp1/Sp3 binding have not been mapped in detail. Herein, we demonstrate that the GC-rich regions flanking the viral cAMP-responsive element (CRE) within TRE-1 repeat III exhibit substantial affinity for both Sp1 and Sp3. We demonstrate that purified Sp1 competes with purified CREB for binding to TRE-1 repeat III due to the physical proximity of the Sp1/Sp3 and ATF/CREB binding sites, while purified Sp1 forms a multiprotein complex with purified CREB in the presence of Tax as demonstrated by electrophoretic mobility shift (EMS) analyses. Sp1 and Sp3 binding to the U3 region of the HTLV-1 LTR in the presence of Tax in vivo was confirmed by chromatin immunoprecipitation using HTLV-1-infected T cells (SLB-1 and C8166). Overexpression of Sp1 was modestly enhanced, while overexpression of Sp3 inhibited basal and Tax-mediated transactivation of the HTLV-1 LTR in U-937 cells (which express relatively low levels of endogenous Sp1 and Sp3). Furthermore, the modest upregulation of LTR activation caused by overexpression of Sp1 could be blocked by site-directed mutagenesis of the GC-rich Sp1/Sp3 binding sites within TRE-1 repeat III. These results suggest that both Sp1 and Sp3 transcription factor binding to TRE-1 repeat III participate in regulation of HTLV-1 viral gene expression.
AB - Transcription factors of the Sp family are known to play key roles in the regulation of both constitutive as well as cell type- and differentiation stage-specific gene expression. Binding sites for factors of the Sp family (Sp1 and Sp3) have previously been identified within the U3 region of the human T-cell leukemia virus type 1 (HTLV-1) long terminal repeat (LTR). Although previous studies have demonstrated that Sp1 and Sp3 can interact with the Tax-responsive element 1 (TRE-1) repeat III, the sequences required for Sp1/Sp3 binding have not been mapped in detail. Herein, we demonstrate that the GC-rich regions flanking the viral cAMP-responsive element (CRE) within TRE-1 repeat III exhibit substantial affinity for both Sp1 and Sp3. We demonstrate that purified Sp1 competes with purified CREB for binding to TRE-1 repeat III due to the physical proximity of the Sp1/Sp3 and ATF/CREB binding sites, while purified Sp1 forms a multiprotein complex with purified CREB in the presence of Tax as demonstrated by electrophoretic mobility shift (EMS) analyses. Sp1 and Sp3 binding to the U3 region of the HTLV-1 LTR in the presence of Tax in vivo was confirmed by chromatin immunoprecipitation using HTLV-1-infected T cells (SLB-1 and C8166). Overexpression of Sp1 was modestly enhanced, while overexpression of Sp3 inhibited basal and Tax-mediated transactivation of the HTLV-1 LTR in U-937 cells (which express relatively low levels of endogenous Sp1 and Sp3). Furthermore, the modest upregulation of LTR activation caused by overexpression of Sp1 could be blocked by site-directed mutagenesis of the GC-rich Sp1/Sp3 binding sites within TRE-1 repeat III. These results suggest that both Sp1 and Sp3 transcription factor binding to TRE-1 repeat III participate in regulation of HTLV-1 viral gene expression.
UR - http://www.scopus.com/inward/record.url?scp=33744827709&partnerID=8YFLogxK
UR - http://www.scopus.com/inward/citedby.url?scp=33744827709&partnerID=8YFLogxK
U2 - 10.1089/dna.2006.25.262
DO - 10.1089/dna.2006.25.262
M3 - Article
C2 - 16716116
AN - SCOPUS:33744827709
SN - 1044-5498
VL - 25
SP - 262
EP - 276
JO - DNA and Cell Biology
JF - DNA and Cell Biology
IS - 5
ER -