TY - JOUR
T1 - Regulation of ribosomal DNA transcription by insulin
AU - Hannan, Katherine M.
AU - Rothblum, Lawrence I.
AU - Jefferson, Leonard S.
PY - 1998/7
Y1 - 1998/7
N2 - The experiments reported here used 3T6-Swiss albino mouse fibroblasts and H4-II-E-C3 rat hepatoma cells as model systems to examine the mechanism(s) through which insulin regulates rDNA transcription. Serum starvation of 3T6 cells for 72 h resulted in a marked reduction in rDNA transcription. Treatment of serum-deprived cells with insulin was sufficient to restore rDNA transcription to control values. In addition, treatment of exponentially growing H4-II-E-C3 with insulin stimulated rDNA transcription. However, for both cell types, the stimulation of rDNA transcription in response to insulin was not associated with a change in the cellular content of RNA polymerase I. Thus we conclude that insulin must cause alterations in formation of the active RNA polymerase I initiation complex and/or the activities of auxiliary rDNA transcription factors. In support of this conclusion, insulin treatment of both cell types was found to increase the nuclear content of upstream binding factor (UBF) and RNA polymerase I- associated factor 53. Both of these factors are thought to be involved in recruitment of RNA polymerase I to the rDNA promoter. Nuclear run-on experiments demonstrated that the increase in cellular content of UBF was due to elevated transcription of the UBF gene. In addition, overexpression of UBF was sufficient to directly stimulate rDNA transcription from a reporter construct. The results demonstrate that insulin is capable of stimulating rDNA transcription in both 3T6 and H4-II-E-C3 cells, at least in part by increasing the cellular content of components required for assembly of RNA polymerase I into an active complex.
AB - The experiments reported here used 3T6-Swiss albino mouse fibroblasts and H4-II-E-C3 rat hepatoma cells as model systems to examine the mechanism(s) through which insulin regulates rDNA transcription. Serum starvation of 3T6 cells for 72 h resulted in a marked reduction in rDNA transcription. Treatment of serum-deprived cells with insulin was sufficient to restore rDNA transcription to control values. In addition, treatment of exponentially growing H4-II-E-C3 with insulin stimulated rDNA transcription. However, for both cell types, the stimulation of rDNA transcription in response to insulin was not associated with a change in the cellular content of RNA polymerase I. Thus we conclude that insulin must cause alterations in formation of the active RNA polymerase I initiation complex and/or the activities of auxiliary rDNA transcription factors. In support of this conclusion, insulin treatment of both cell types was found to increase the nuclear content of upstream binding factor (UBF) and RNA polymerase I- associated factor 53. Both of these factors are thought to be involved in recruitment of RNA polymerase I to the rDNA promoter. Nuclear run-on experiments demonstrated that the increase in cellular content of UBF was due to elevated transcription of the UBF gene. In addition, overexpression of UBF was sufficient to directly stimulate rDNA transcription from a reporter construct. The results demonstrate that insulin is capable of stimulating rDNA transcription in both 3T6 and H4-II-E-C3 cells, at least in part by increasing the cellular content of components required for assembly of RNA polymerase I into an active complex.
UR - http://www.scopus.com/inward/record.url?scp=0031827758&partnerID=8YFLogxK
UR - http://www.scopus.com/inward/citedby.url?scp=0031827758&partnerID=8YFLogxK
U2 - 10.1152/ajpcell.1998.275.1.c130
DO - 10.1152/ajpcell.1998.275.1.c130
M3 - Article
C2 - 9688843
AN - SCOPUS:0031827758
SN - 0363-6143
VL - 275
SP - C130-C138
JO - American Journal of Physiology - Cell Physiology
JF - American Journal of Physiology - Cell Physiology
IS - 1 44-1
ER -