Relation between charge on free electrodes and the response of electrostatic MEMS actuators and sensors

Research output: Chapter in Book/Report/Conference proceedingConference contribution

1 Scopus citations

Abstract

Stability is an important factor in the study of electrostatic MEMS switches and sensors. Their response is significantly improved by either applying a large dc bias or by depositing a prescribed value of charge on the oating electrodes. This charge is related to the pull-in voltages. Measurement of charge without causing loading is recommended; so instead of incorporating any field operated transistor circuitry for this purpose, methods are developed to relate the charge magnitude to the dynamical response of the actuators. Elata et al. developed eficient and reliable ways of charge monitoring without causing loading to the device. These methods rely on energy of the system instead of performing integration in the time domain. Based on their work, this paper examines the alterations in the dynamic response of actuators. The positive and negative pull-in voltages in the voltage displacement plane are symmetrically located with respect to charge on the oating electrode. This fact is exploited to carry out indirect charge measurement from the average of the two pull-in values. A regression scheme is proposed that predicts the charge from the voltage shift based on limited measurements of capacitance of the actuator.

Original languageEnglish (US)
Title of host publicationMicro- and Nanotechnology Sensors, Systems, and Applications IV
DOIs
StatePublished - 2012
EventMicro- and Nanotechnology Sensors, Systems, and Applications IV - Baltimore, MD, United States
Duration: Apr 23 2012Apr 27 2012

Publication series

NameProceedings of SPIE - The International Society for Optical Engineering
Volume8373
ISSN (Print)0277-786X

Other

OtherMicro- and Nanotechnology Sensors, Systems, and Applications IV
Country/TerritoryUnited States
CityBaltimore, MD
Period4/23/124/27/12

All Science Journal Classification (ASJC) codes

  • Electronic, Optical and Magnetic Materials
  • Condensed Matter Physics
  • Computer Science Applications
  • Applied Mathematics
  • Electrical and Electronic Engineering

Fingerprint

Dive into the research topics of 'Relation between charge on free electrodes and the response of electrostatic MEMS actuators and sensors'. Together they form a unique fingerprint.

Cite this