Relationship between enzyme activity and dimeric structure of recombinant HTV-1 reverse transcriptase

G. Tachedjian, J. Radzio, N. Sluis-Cremer

Research output: Contribution to journalArticlepeer-review

18 Scopus citations


The multifunctional enzyme human immunodeficiency virus type 1 (HTV-1) reverse transcriptase (RT) is a heterodimer composed of a 66-kDa (p66) subunit and a p66-derived 51-kDa (p51) subunit. p66/p51 HIV-1 RT contains 1 functional DNA polymerase and 1 ribonuclease H (RNase H) active site, which both reside in the p66 subunit at spatially distinct regions. In this study, we have investigated the relationship between the heterodimeric structure of HIV-1 RT and its enzymatic properties by introducing mutations at RT codon W401 that inhibit the formation of p66/p51 heterodimers. We demonstrate a striking correlation between abrogation of both HIV-1 RT dimerization and DNA polymerase activity. In contrast, the p66 monomers exhibited only moderately slowed catalytic rates of DNA polymerase-dependent and DNA polymerase-independent RNase H cleavage activity compared with the wild-type (WT) enzyme. Furthermore, no major changes in the unique cleavage patterns were observed between the WT and mutant enzymes for the different substrates used in the RNase H cleavage assays. Based on these results, and on our current understanding of HIV-1 RT structure, we propose that the p66 monomer can adopt an open tertiary conformation that is similar to that observed for the subunit in the heterodimeric enzyme. We also propose that the formation of intersubunit interactions in HIV-1 RT regulates the establishment of a functional DNA polymerase active site.

Original languageEnglish (US)
Pages (from-to)5-13
Number of pages9
JournalProteins: Structure, Function and Genetics
Issue number1
StatePublished - Jun 15 2005

All Science Journal Classification (ASJC) codes

  • Structural Biology
  • Biochemistry
  • Molecular Biology


Dive into the research topics of 'Relationship between enzyme activity and dimeric structure of recombinant HTV-1 reverse transcriptase'. Together they form a unique fingerprint.

Cite this