TY - GEN
T1 - Relative effects of velocity- And mixture-coupling in a thermoacoustically unstable, partially-premixed flame
AU - Karmarkar, Ashwini
AU - O'Connor, Jacqueline
AU - Boxx, Isaac
N1 - Publisher Copyright:
© 2021 American Society of Mechanical Engineers (ASME). All rights reserved.
PY - 2021
Y1 - 2021
N2 - Combustion instability, which is the result of a coupling between combustor acoustic modes and unsteady flame heat release rate, is a severely limiting factor in the operability and performance of modern gas turbine engines. This coupling can occur through different coupling pathways, such as flow field fluctuations or equivalence ratio fluctuations. In realistic combustor systems, there are complex hydrodynamic and thermo-chemical processes involved, which can lead to multiple coupling pathways. In order to understand and predict the mechanisms that govern the onset of combustion instability in real gas turbine engines, we consider the influences that each of these coupling pathways can have on the stability and dynamics of a partiallypremixed, swirl-stabilized flame. In this study, we use a model gas turbine combustor with two concentric swirling nozzles of air, separated by a ring of fuel injectors, operating at an elevated pressure of 5 bar. The flow split between the two streams is systematically varied to observe the impact on the flow and flame dynamics. High-speed stereoscopic particle image velocimetry, OH planar laser-induced fluorescence, and acetone planar laserinduced fluorescence are used to obtain information about the velocity field, flame, and fuel-flow behavior, respectively. Depending on the flow conditions, a thermoacoustic oscillation mode or a hydrodynamic mode, identified as the precessing vortex core, is present. The focus of this study is to characterize the mixture coupling processes in this partially-premixed flame as well as the impact that the velocity oscillations have on mixture cou-pling. Our results show that, for this combustor system, changing the flow split between the two concentric nozzles can alter the dominant harmonic oscillation modes in the system, which can significantly impact the dispersion of fuel into air, thereby modulating the local equivalence ratio of the flame. This insight can be used to design instability control mechanisms in real gas turbine engines.
AB - Combustion instability, which is the result of a coupling between combustor acoustic modes and unsteady flame heat release rate, is a severely limiting factor in the operability and performance of modern gas turbine engines. This coupling can occur through different coupling pathways, such as flow field fluctuations or equivalence ratio fluctuations. In realistic combustor systems, there are complex hydrodynamic and thermo-chemical processes involved, which can lead to multiple coupling pathways. In order to understand and predict the mechanisms that govern the onset of combustion instability in real gas turbine engines, we consider the influences that each of these coupling pathways can have on the stability and dynamics of a partiallypremixed, swirl-stabilized flame. In this study, we use a model gas turbine combustor with two concentric swirling nozzles of air, separated by a ring of fuel injectors, operating at an elevated pressure of 5 bar. The flow split between the two streams is systematically varied to observe the impact on the flow and flame dynamics. High-speed stereoscopic particle image velocimetry, OH planar laser-induced fluorescence, and acetone planar laserinduced fluorescence are used to obtain information about the velocity field, flame, and fuel-flow behavior, respectively. Depending on the flow conditions, a thermoacoustic oscillation mode or a hydrodynamic mode, identified as the precessing vortex core, is present. The focus of this study is to characterize the mixture coupling processes in this partially-premixed flame as well as the impact that the velocity oscillations have on mixture cou-pling. Our results show that, for this combustor system, changing the flow split between the two concentric nozzles can alter the dominant harmonic oscillation modes in the system, which can significantly impact the dispersion of fuel into air, thereby modulating the local equivalence ratio of the flame. This insight can be used to design instability control mechanisms in real gas turbine engines.
UR - http://www.scopus.com/inward/record.url?scp=85115642042&partnerID=8YFLogxK
UR - http://www.scopus.com/inward/citedby.url?scp=85115642042&partnerID=8YFLogxK
U2 - 10.1115/GT2021-59113
DO - 10.1115/GT2021-59113
M3 - Conference contribution
AN - SCOPUS:85115642042
T3 - Proceedings of the ASME Turbo Expo
BT - Combustion, Fuels, and Emissions
PB - American Society of Mechanical Engineers (ASME)
T2 - ASME Turbo Expo 2021: Turbomachinery Technical Conference and Exposition, GT 2021
Y2 - 7 June 2021 through 11 June 2021
ER -