Abstract
An atomization route incorporating colloidal silica as a template was employed to synthesize LaNi0.5Co0.5O3/0.333Co3O4 (LNCO/CO) hollow spheres with a highly mesoporous shell. XRD and FESEM and HRTEM were used to characterize the crystalline phases and micro-morphology, respectively. The mesoporous shell showed a high specific surface area of 247 m2 g-1 as well as a mean pore size of about 2.53 nm as determined from N2 adsorption-desorption isotherms. The as-obtained spherical hollow spheres exhibited remarkable electrochemical performance as a battery-type electrode material with a maximum specific capacity of 498C g-1 at a current density of 2 A g-1 and ultra-long charge-discharge stability for 50 000 cycles in a three-electrode system. Additionally, a hybrid supercapacitor assembled with LNCO/CO hollow spheres as the positive electrode and N-doped mesoporous carbon as the negative electrode showed a high specific capacitance of 113.2 F g-1 at 1 A g-1 and a very high energy density of 42.8 Wh kg-1 at a power density of 424 W kg-1. The hybrid supercapacitor also exhibited a long-term cycle life of up to 30 000 cycles with a specific capacitance retention of 90.4%, and these properties meet the growing demands of long-life energy-related devices.
Original language | English (US) |
---|---|
Pages (from-to) | 5838-5845 |
Number of pages | 8 |
Journal | Journal of Materials Chemistry A |
Volume | 5 |
Issue number | 12 |
DOIs | |
State | Published - 2017 |
All Science Journal Classification (ASJC) codes
- General Chemistry
- Renewable Energy, Sustainability and the Environment
- General Materials Science