Remote sensing of sediment density and velocity gradients in the transition layer

Charles W. Holland, Jan Dettmer, Stan E. Dosso

Research output: Contribution to journalArticlepeer-review

43 Scopus citations


The geoacoustic properties of marine sediments, e.g., bulk density and compressional velocity, commonly exhibit large variations in depth near the water-sediment interface. This layer, termed the transition layer, is typically of O(10-1-100) m in thickness. Depth variations within the transition layer may have important implications for understanding and modeling acoustic interaction with the seabed, including propagation and reverberation. In addition, the variations may contain significant clues about the underlying depositional or erosional processes. Characteristics of the transition layer can be measured directly (e.g., coring) or remotely. Remote measurements have the advantage of sampling without disturbing the sediment properties; they also have the potential to be orders of magnitude faster and less expensive than direct methods. It is shown that broadband seabed reflection data can be exploited to remotely obtain the depth dependent density and velocity profiles in the transition layer to high accuracy. A Bayesian inversion approach, which accounts for correlated data errors, provides estimates and uncertainties for the geoacoustic properties. These properties agree with direct (i.e., core) measurements within the uncertainty estimates.

Original languageEnglish (US)
Pages (from-to)163-177
Number of pages15
JournalJournal of the Acoustical Society of America
Issue number1
StatePublished - Jul 2005

All Science Journal Classification (ASJC) codes

  • Arts and Humanities (miscellaneous)
  • Acoustics and Ultrasonics


Dive into the research topics of 'Remote sensing of sediment density and velocity gradients in the transition layer'. Together they form a unique fingerprint.

Cite this