Repair of DNA containing O6-alkylguanine

Anthony E. Pegg, Timothy L. Byers

Research output: Contribution to journalArticlepeer-review

272 Scopus citations


O6-Alkylguanines, important DNA adducts formed by alkylating agents, can lead to mutations and to cell death unless repaired. The major pathway of repair involves the transfer of the alkyl group from the DNA to a cysteine acceptor site in the protein O6-alkylguanine-DNA alkyltransferase. The alkyltransferase brings about this transfer without need for cofactors and the DNA is restored completely by the action of a single protein, but the cysteine acceptor site is not regenerated and the number of O6-alkylguanines that can be repaired is equal to the number of active alkyltransferase molecules. The alkylated form of the protein is unstable in mammalian cells and is degraded rapidly. Cloning of the cDNAs for the alkyltransferase proteins from bacteria, yeast, and mammals indicates a significant similarity, particularly in the region surrounding the cysteine acceptor site. There is a major difference in the regulation of the alkyltransferase between mammalian cells and certain bacteria, where it is induced as part of the adaptive response to alkylating agents. Regulation of the content of alkyltransferase in mammalian cells differs with species and cell type and, in some cases, the level of the protein is increased by exposure to alkylating agents or X rays. A significant fraction of human tumor cell lines do not express the alkyltransferase gene and, thus, are much more sensitive to mutagenesis and killing by alkylating agents. The frequency of primary tumor cells that lack alkyltransferase protein is not yet clear. However, it is known that the level of alkyltransferase in tumors is a significant factor in resistance to both methylating agents and bifunctional chloroethylating agents. Inactivation of the alkyltransferase, which can be brought about by pretreatment with an alkylating agent or by exposure to O6-benzylguanine (a powerful nontoxic inhibitor), sensitizes tumor cells to these chemotherapeutic alkylating agents and may prove a useful therapeutic strategy.

Original languageEnglish (US)
Pages (from-to)2302-2310
Number of pages9
JournalFASEB Journal
Issue number6
StatePublished - Mar 1992

All Science Journal Classification (ASJC) codes

  • Biotechnology
  • Biochemistry
  • Molecular Biology
  • Genetics


Dive into the research topics of 'Repair of DNA containing O6-alkylguanine'. Together they form a unique fingerprint.

Cite this