Reproduction Differentially Affects Trabecular Bone Depending on Its Mechanical Versus Metabolic Role

Chantal M.J. De Bakker, Wei Ju Tseng, Yihan Li, Hongbo Zhao, Allison R. Altman-Singles, Yonghoon Jeong, Juhanna Robberts, Lin Han, Do Gyoon Kim, X. Sherry Liu

Research output: Contribution to journalArticlepeer-review

14 Scopus citations

Abstract

During pregnancy and lactation, the maternal skeleton provides calcium for fetal/infant growth, resulting in substantial bone loss, which partially recovers after weaning. However, the amount of bone that is lost and the extent of post-weaning recovery are highly variable among different skeletal sites, and, despite persistent alterations in bone structure at some locations, reproductive history does not increase postmenopausal fracture risk. To explain this phenomenon, we hypothesized that the degree of reproductive bone loss/recovery at trabecular sites may vary depending on the extent to which the trabecular compartment is involved in the bone's load-bearing function. Using a rat model, we quantified the proportion of the load carried by the trabeculae, as well as the extent of reproductive bone loss and recovery, at two distinct skeletal sites: the tibia and lumbar vertebra. Both sites underwent significant bone loss during pregnancy and lactation, which was partially recovered post-weaning. However, the extent of the deterioration and the resumption of trabecular load-bearing capacity after weaning varied substantially. Tibial trabecular bone, which bore a low proportion of the total applied load, underwent dramatic and irreversible microstructural deterioration during reproduction. Meanwhile, vertebral trabecular bone bore a greater fraction of the load, underwent minimal deterioration in microarchitecture, and resumed its full load-bearing capacity after weaning. Because pregnancy and lactation are physiological processes, the distinctive responses to these natural events among different skeletal sites may help to elucidate the extent of the trabecular bone's structural versus metabolic functions.

Original languageEnglish (US)
Article number111006
JournalJournal of Biomechanical Engineering
Volume139
Issue number11
DOIs
StatePublished - Nov 1 2017

All Science Journal Classification (ASJC) codes

  • Biomedical Engineering
  • Physiology (medical)

Fingerprint

Dive into the research topics of 'Reproduction Differentially Affects Trabecular Bone Depending on Its Mechanical Versus Metabolic Role'. Together they form a unique fingerprint.

Cite this