TY - JOUR
T1 - Requirement of heat shock protein 90 for human hepatitis B virus reverse transcriptase function
AU - Hu, Jianming
AU - Flores, Dafna
AU - Toft, David
AU - Wang, Xingtai
AU - Nguyen, David
PY - 2004/12
Y1 - 2004/12
N2 - The initiation of reverse transcription and nucleocapsid assembly in hepatitis B virus (HBV) depends on the specific recognition of an RNA signal (the packaging signal, ε) on the pregenomic RNA (pgRNA) by the viral reverse transcriptase (RT). RT-ε interaction in the duck hepatitis B virus (DHBV) was recently shown to require the molecular chaperone complex, the heat shock protein 90 (Hsp90). However, the requirement for RT-ε interaction in the human HBV has remained unknown due to the inability to obtain a purified RT protein active in specific ε binding. We now report that Hsp90 is also required for HBV RT-ε interaction. Inhibition of Hsp90 led to diminished HBV pgRNA packaging into nucleocapsids in cells, which depends on RT-ε interaction. Furthermore, using truncated HBV RT proteins purified from bacteria and five purified Hsp90 chaperone factors, we have developed an in vitro RT-ε binding assay. Our results demonstrate that Hsp90, in a dynamic process that was dependent on ATP hydrolysis, facilitated RT-ε interaction in HBV, as in DHBV. Specific ε binding required sequences from both the amino-terminal terminal protein and the carboxy-terminal RT domain. Only the cognate HBV ε but not the DHBV ε, could bind the HBV RT proteins. Furthermore, the internal bulge, but not the apical loop, of ε was required for RT binding. The establishment of a defined in vitro reconstitution system has now paved the way for future biochemical and structural studies to elucidate the mechanisms of RT-ε interaction and chaperone activation.
AB - The initiation of reverse transcription and nucleocapsid assembly in hepatitis B virus (HBV) depends on the specific recognition of an RNA signal (the packaging signal, ε) on the pregenomic RNA (pgRNA) by the viral reverse transcriptase (RT). RT-ε interaction in the duck hepatitis B virus (DHBV) was recently shown to require the molecular chaperone complex, the heat shock protein 90 (Hsp90). However, the requirement for RT-ε interaction in the human HBV has remained unknown due to the inability to obtain a purified RT protein active in specific ε binding. We now report that Hsp90 is also required for HBV RT-ε interaction. Inhibition of Hsp90 led to diminished HBV pgRNA packaging into nucleocapsids in cells, which depends on RT-ε interaction. Furthermore, using truncated HBV RT proteins purified from bacteria and five purified Hsp90 chaperone factors, we have developed an in vitro RT-ε binding assay. Our results demonstrate that Hsp90, in a dynamic process that was dependent on ATP hydrolysis, facilitated RT-ε interaction in HBV, as in DHBV. Specific ε binding required sequences from both the amino-terminal terminal protein and the carboxy-terminal RT domain. Only the cognate HBV ε but not the DHBV ε, could bind the HBV RT proteins. Furthermore, the internal bulge, but not the apical loop, of ε was required for RT binding. The establishment of a defined in vitro reconstitution system has now paved the way for future biochemical and structural studies to elucidate the mechanisms of RT-ε interaction and chaperone activation.
UR - http://www.scopus.com/inward/record.url?scp=8644249753&partnerID=8YFLogxK
UR - http://www.scopus.com/inward/citedby.url?scp=8644249753&partnerID=8YFLogxK
U2 - 10.1128/JVI.78.23.13122-13131.2004
DO - 10.1128/JVI.78.23.13122-13131.2004
M3 - Article
C2 - 15542664
AN - SCOPUS:8644249753
SN - 0022-538X
VL - 78
SP - 13122
EP - 13131
JO - Journal of virology
JF - Journal of virology
IS - 23
ER -