Abstract
The residual stress of multilayers in piezoelectric microelectromechanical systems structures influences their electromechanical properties and performance. This paper describes the development of residual stress in 1.6 μm Pb(Zr0.52,Ti0.48)O3 (PZT)/0.3 μm ZrO2/0.5 μm SiO2 stacks for microactuator applications. The residual stresses were characterized by wafer curvature or load-deflection measurements. PZT and zirconia films were deposited on 4-in. (100) silicon wafers with 0.5 μm thick thermally grown SiO2 by sol-gel processes. After the final film deposition, the obtained residual stress of PZT, ZrO2, and SiO2 were 100-150, 230-270, and - 147 MPa, respectively. The average stress in the stack was ∼ 80 MPa. These residual stresses are explained in terms of the thermal expansion mismatch between the layers and the substrate. Load-deflection measurements were conducted to evaluate localized residual stresses using released circular diaphragms. The load-deflection results were consistent with the average stress value from the wafer curvature measurements. It was found that more reasonable estimates of the stack stresses could be obtained when mid-point vertical deflection data below 6 μm were used, for diaphragms 0.8-1.375 mm in diameter.
Original language | English (US) |
---|---|
Pages (from-to) | 213-221 |
Number of pages | 9 |
Journal | Thin Solid Films |
Volume | 510 |
Issue number | 1-2 |
DOIs | |
State | Published - Jul 3 2006 |
All Science Journal Classification (ASJC) codes
- Electronic, Optical and Magnetic Materials
- Surfaces and Interfaces
- Surfaces, Coatings and Films
- Metals and Alloys
- Materials Chemistry