@article{29d411f10118438b8603552aea5397cf,
title = "Resilience of persistent Arctic mixed-phase clouds",
abstract = "The Arctic region is particularly sensitive to climate change. Mixed-phase clouds, comprising both ice and supercooled liquid water, have a large impact on radiative fluxes in the Arctic. These clouds occur frequently during all seasons in the region, where they often persist for many days at a time. This persistence is remarkable given the inherent instability of ice- liquid mixtures. In recent years it has emerged that feedbacks between numerous local processes, including the formation and growth of ice and cloud droplets, radiative cooling, turbulence, entrainment and surface fluxes of heat and moisture, interact to create a resilient mixed-phase cloud system. As well as the persistent mixed-phase cloud state there is another distinct Arctic state, characterized by radiatively clear conditions. The occurrence of either state seems to be related, in part, to large-scale environmental conditions. We suggest that shifts in the large-scale environment could alter the prevalence of mixed-phase clouds, potentially affecting surface radiative fluxes and the Arctic energy budget. copy; 2012 Macmillan Publishers Limited. All rights reserved.",
author = "Hugh Morrison and {De Boer}, Gijs and Graham Feingold and Jerry Harrington and Shupe, {Matthew D.} and Kara Sulia",
note = "Funding Information: Comments on an earlier draft of the manuscript by A. Gettelman, J. Kay and N. Johnson are appreciated. H.M. was partially supported by NOAA grant NA08OAR4310543, U.S. DOE DE-FG02-08ER64574, and the NSF Science and Technology Center for Multiscale Modeling of Atmospheric Processes, managed by Colorado State University under cooperative agreement ATM-0425247. G.B. was supported by the Director, Office of Science, Office of Biological and Environmental Research of the U.S. DOEnergy under contract DE-AC02-05CH11231 as part of their Climate and Earth System Modeling Program. G.F. was supported by DOE grant DE-SC0002037 and NOAA{\textquoteright}s Climate Goal. M.S. was supported by U.S. DOE grant DE-FG02-05ER63965 and NSF ARC 1023366. J.H. and K.S. were supported by NSF grant ATM-0639542 and grant AGS-0951807. J.H. received partial support through U.S. DOE grant DE-FG02-05ER64058. K.S. was also partially supported by an award from the DOE{\textquoteright}s Office of Science Graduate Fellowship Program. We thank D. Fisher (NOAA) for assistance in drafting Fig. 3, and E. Edelson and the LBNL EETD computing team for their help in setting up a project wiki. Data for constructing Fig. 4 were obtained from the SHEBA Atmospheric Surface Flux Group. LBNL is managed by the University of California under U.S. DOE grant DE-AC02-05CH11231. National Center for Atmospheric Research is sponsored by the National Science Foundation.",
year = "2012",
month = jan,
doi = "10.1038/ngeo1332",
language = "English (US)",
volume = "5",
pages = "11--17",
journal = "Nature Geoscience",
issn = "1752-0894",
publisher = "Nature Publishing Group",
number = "1",
}