Abstract
The use of two-dimensional electronic spectroscopy (2DES) to study electron-electron scattering dynamics in plasmonic gold nanorods is described. The 2DES resolved the time-dependent plasmon homogeneous line width Lh(t), which was sensitive to changes in Fermi-level carrier densities. This approach was effective because electronic excitation accelerated plasmon dephasing, which broadened Lh. Analysis of Lh(t) indicated plasmon coherence times were decreased by 20-50%, depending on excitation conditions. Electron-electron scattering rates of approximately 0.01 fs-1 were obtained by fitting the time-dependent Lh broadening; rates increased quadratically with both excitation pulse energy and frequency. This rate dependence agreed with Fermi-liquid theory-based predictions. Hot electron thermalization through electron-phonon scattering resulted in Lh narrowing. To our knowledge, this is the first use of the plasmon Lh(t) to isolate electron-electron scattering dynamics in colloidal metal nanoparticles. These results illustrate the effectiveness of 2DES for studying hot electron dynamics of solution-phase plasmonic ensembles.
Original language | English (US) |
---|---|
Pages (from-to) | 7722-7727 |
Number of pages | 6 |
Journal | Nano letters |
Volume | 20 |
Issue number | 10 |
DOIs | |
State | Published - Oct 14 2020 |
All Science Journal Classification (ASJC) codes
- Bioengineering
- General Chemistry
- General Materials Science
- Condensed Matter Physics
- Mechanical Engineering