Revealing the Strain Effect on Radiation Response of Amorphous–Crystalline Cu-Zr Laminate

Miaomiao Jin, Penghui Cao

Research output: Contribution to journalArticlepeer-review

2 Scopus citations

Abstract

Nanocrystalline materials containing amorphous intergranular films (AIFs) exhibit excellent mechanical properties, radiation resistance, and thermal stability and may serve as promising candidate materials for use in advanced nuclear energy systems. The aim of this work is to reveal the effect of mechanical stress on the radiation damage behavior of AIF systems. Based on a bicrystal Cu system with Zr-doped AIFs, molecular dynamics is used to simulate the radiation process and examine the AIF sink efficiency, defect propensity, defect size distribution, and Zr mixing under uniaxial and hydrostatic strain conditions. The results show that the sink efficiency of the glue-like AIFs is not compromised under applied strains. The anisotropy resulting from the intrinsic microstructure and elastic deformation leads to a distinct radiation response, where extension (contraction) of the structure perpendicular to the AIFs increases (decreases) the vacancy density. The strain-dependent defect density, along with the cluster size distributions, can be interpreted based on the variations in the defect formation energy and anisotropic defect diffusion. Finally, the Zr mixing induced by collision cascades is found to be insensitive to the mechanical strains. These findings provide meaningful information towards understanding the stress effect on the radiation response of AIF systems.

Original languageEnglish (US)
Pages (from-to)868-876
Number of pages9
JournalJOM
Volume72
Issue number2
DOIs
StatePublished - Feb 1 2020

All Science Journal Classification (ASJC) codes

  • General Materials Science
  • General Engineering

Fingerprint

Dive into the research topics of 'Revealing the Strain Effect on Radiation Response of Amorphous–Crystalline Cu-Zr Laminate'. Together they form a unique fingerprint.

Cite this