Reversible and selective ion intercalation through the top surface of few-layer MoS2

Jinsong Zhang, Ankun Yang, Xi Wu, Jorik van de Groep, Peizhe Tang, Shaorui Li, Bofei Liu, Feifei Shi, Jiayu Wan, Qitong Li, Yongming Sun, Zhiyi Lu, Xueli Zheng, Guangmin Zhou, Chun Lan Wu, Shou Cheng Zhang, Mark L. Brongersma, Jia Li, Yi Cui

Research output: Contribution to journalArticlepeer-review

147 Scopus citations

Abstract

Electrochemical intercalation of ions into the van der Waals gap of two-dimensional (2D) layered materials is a promising low-temperature synthesis strategy to tune their physical and chemical properties. It is widely believed that ions prefer intercalation into the van der Waals gap through the edges of the 2D flake, which generally causes wrinkling and distortion. Here we demonstrate that the ions can also intercalate through the top surface of few-layer MoS2 and this type of intercalation is more reversible and stable compared to the intercalation through the edges. Density functional theory calculations show that this intercalation is enabled by the existence of natural defects in exfoliated MoS2 flakes. Furthermore, we reveal that sealed-edge MoS2 allows intercalation of small alkali metal ions (e.g., Li+ and Na+) and rejects large ions (e.g., K+). These findings imply potential applications in developing functional 2D-material-based devices with high tunability and ion selectivity.

Original languageEnglish (US)
Article number5289
JournalNature communications
Volume9
Issue number1
DOIs
StatePublished - Dec 1 2018

All Science Journal Classification (ASJC) codes

  • General Chemistry
  • General Biochemistry, Genetics and Molecular Biology
  • General Physics and Astronomy

Fingerprint

Dive into the research topics of 'Reversible and selective ion intercalation through the top surface of few-layer MoS2'. Together they form a unique fingerprint.

Cite this