Revisiting Personalized Federated Learning: Robustness Against Backdoor Attacks

Zeyu Qin, Liuyi Yao, Daoyuan Chen, Yaliang Li, Bolin Ding, Minhao Cheng

Research output: Chapter in Book/Report/Conference proceedingConference contribution

15 Scopus citations

Abstract

In this work, besides improving prediction accuracy, we study whether personalization could bring robustness benefits to backdoor attacks. We conduct the first study of backdoor attacks in the pFL framework, testing 4 widely used backdoor attacks against 6 pFL methods on benchmark datasets FEMNIST and CIFAR-10, a total of 600 experiments. The study shows that pFL methods with partial model-sharing can significantly boost robustness against backdoor attacks. In contrast, pFL methods with full model-sharing do not show robustness. To analyze the reasons for varying robustness performances, we provide comprehensive ablation studies on different pFL methods. Based on our findings, we further propose a lightweight defense method, Simple-Tuning, which empirically improves defense performance against backdoor attacks. We believe that our work could provide both guidance for pFL application in terms of its robustness and offer valuable insights to design more robust FL methods in the future. We open-source our code to establish the first benchmark for black-box backdoor attacks in pFL: https://github.com/alibaba/FederatedScope/tree/backdoor-bench.

Original languageEnglish (US)
Title of host publicationKDD 2023 - Proceedings of the 29th ACM SIGKDD Conference on Knowledge Discovery and Data Mining
PublisherAssociation for Computing Machinery
Pages4743-4755
Number of pages13
ISBN (Electronic)9798400701030
DOIs
StatePublished - Aug 4 2023
Event29th ACM SIGKDD Conference on Knowledge Discovery and Data Mining, KDD 2023 - Long Beach, United States
Duration: Aug 6 2023Aug 10 2023

Publication series

NameProceedings of the ACM SIGKDD International Conference on Knowledge Discovery and Data Mining
ISSN (Print)2154-817X

Conference

Conference29th ACM SIGKDD Conference on Knowledge Discovery and Data Mining, KDD 2023
Country/TerritoryUnited States
CityLong Beach
Period8/6/238/10/23

All Science Journal Classification (ASJC) codes

  • Software
  • Information Systems

Fingerprint

Dive into the research topics of 'Revisiting Personalized Federated Learning: Robustness Against Backdoor Attacks'. Together they form a unique fingerprint.

Cite this