TY - JOUR
T1 - Ribonuclease activity of Petunia inflata S proteins is essential for rejection of self-pollen
AU - Huang, Shihshieh
AU - Lee, Hyun Sook
AU - Karunanandaa, Balasulojini
AU - Kao, Teh Hui
PY - 1994/7
Y1 - 1994/7
N2 - S proteins, pistil-specific ribonucleases that cosegregate with S alleles, have previously been shown to control rejection of self-pollen in Petunia inflata and Nicotiana alata, two solanaceous species that display gametophytic self-incompatibility. The ribonuclease activity of S proteins was thought to degrade RNA of self-pollen tubes, resulting in the arrest of their growth in the style. However, to date no direct evidence has been obtained. Here, the ribonuclease activity of S3 protein of P. inflata was abolished, and the effect on the pistil's ability to reject S3 pollen was examined. The S3 gene was mutagenized by replacing the codon for His-93, which has been implicated in ribonuclease activity, with a codon for asparagine, and the mutant S3 gene was introduced into P. inflata plants of S1S2 genotype. Two transgenic plants produced a level of mutant S3 protein comparable to that of the S3 protein produced in self-incompatible S1S3 and S2S3 plants, yet they failed to reject S3 pollen. The mutant S3 protein produced in these two transgenic plants did not exhibit any detectable ribonuclease activity. We have previously shown that transgenic plants (S1S2 plants transformed with the wild-type S3 gene) producing a normal level of wild-type S3 protein acquired the ability to reject S3 pollen completely. Thus, the results reported here provide direct evidence that the biochemical mechanism of gametophytic self-incompatibility in P. inflata involves the ribonuclease activity of S proteins.
AB - S proteins, pistil-specific ribonucleases that cosegregate with S alleles, have previously been shown to control rejection of self-pollen in Petunia inflata and Nicotiana alata, two solanaceous species that display gametophytic self-incompatibility. The ribonuclease activity of S proteins was thought to degrade RNA of self-pollen tubes, resulting in the arrest of their growth in the style. However, to date no direct evidence has been obtained. Here, the ribonuclease activity of S3 protein of P. inflata was abolished, and the effect on the pistil's ability to reject S3 pollen was examined. The S3 gene was mutagenized by replacing the codon for His-93, which has been implicated in ribonuclease activity, with a codon for asparagine, and the mutant S3 gene was introduced into P. inflata plants of S1S2 genotype. Two transgenic plants produced a level of mutant S3 protein comparable to that of the S3 protein produced in self-incompatible S1S3 and S2S3 plants, yet they failed to reject S3 pollen. The mutant S3 protein produced in these two transgenic plants did not exhibit any detectable ribonuclease activity. We have previously shown that transgenic plants (S1S2 plants transformed with the wild-type S3 gene) producing a normal level of wild-type S3 protein acquired the ability to reject S3 pollen completely. Thus, the results reported here provide direct evidence that the biochemical mechanism of gametophytic self-incompatibility in P. inflata involves the ribonuclease activity of S proteins.
UR - http://www.scopus.com/inward/record.url?scp=0028465515&partnerID=8YFLogxK
UR - http://www.scopus.com/inward/citedby.url?scp=0028465515&partnerID=8YFLogxK
M3 - Article
C2 - 8069103
AN - SCOPUS:0028465515
SN - 1040-4651
VL - 6
SP - 1021
EP - 1028
JO - Plant Cell
JF - Plant Cell
IS - 7
ER -