Abstract
An extension G ≤ H of lattice-ordered groups is said to be a rigid extension if for each H ∈ H there exists a g ∈ G such that h⊥⊥ = g⊥⊥. In this paper, we will define rigid extensions and some other generalizations in the context of algebraic frames satisfying the FIP. One of the main results is a characterization of rigid extensions using d-elements of the frame. We also show that a rigid extension between two algebraic frames satisfying the FIP will induce a homeomorphism between their corresponding minimal prime spaces with respect to both the hull-kernel topology and the inverse topology. Moreover, basic open sets map to basic open sets.
Original language | English (US) |
---|---|
Pages (from-to) | 133-149 |
Number of pages | 17 |
Journal | Algebra Universalis |
Volume | 62 |
Issue number | 1 |
DOIs | |
State | Published - Dec 2009 |
All Science Journal Classification (ASJC) codes
- Algebra and Number Theory