Risk-Aware Non-Myopic Motion Planner for Large-Scale Robotic Swarm Using CVaR Constraints

Xuru Yang, Yunze Hu, Han Gao, Kang Ding, Zhaoyang Li, Pingping Zhu, Ying Sun, Chang Liu

Research output: Chapter in Book/Report/Conference proceedingConference contribution

Abstract

Swarm robotics has garnered significant attention due to its ability to accomplish elaborate and synchronized tasks. Existing methodologies for motion planning of swarm robotic systems mainly encounter difficulties in scalability and safety guarantee. To address these limitations, we propose a Risk-aware swarm mOtion planner using conditional ValuE-at-Risk (ROVER) that systematically navigates large-scale swarms through cluttered environments while ensuring safety. ROVER formulates a finite-time model predictive control (FTMPC) problem predicated upon the macroscopic state of the robot swarm represented by a Gaussian Mixture Model (GMM) and integrates conditional value-at-risk (CVaR) to ensure collision avoidance. The key component of ROVER is imposing a CVaR constraint on the distribution of the Signed Distance Function between the swarm GMM and obstacles in the FTMPC to enforce collision avoidance. Utilizing the analytical expression of CVaR of a GMM derived in this work, we develop a computationally efficient solution to solve the non-linear constrained FTMPC through sequential linear programming. Simulations and comparisons with representative benchmark approaches demonstrate the effectiveness of ROVER in flexibility, scalability, and safety guarantee.

Original languageEnglish (US)
Title of host publication2024 IEEE/RSJ International Conference on Intelligent Robots and Systems, IROS 2024
PublisherInstitute of Electrical and Electronics Engineers Inc.
Pages5784-5790
Number of pages7
ISBN (Electronic)9798350377705
DOIs
StatePublished - 2024
Event2024 IEEE/RSJ International Conference on Intelligent Robots and Systems, IROS 2024 - Abu Dhabi, United Arab Emirates
Duration: Oct 14 2024Oct 18 2024

Publication series

NameIEEE International Conference on Intelligent Robots and Systems
ISSN (Print)2153-0858
ISSN (Electronic)2153-0866

Conference

Conference2024 IEEE/RSJ International Conference on Intelligent Robots and Systems, IROS 2024
Country/TerritoryUnited Arab Emirates
CityAbu Dhabi
Period10/14/2410/18/24

All Science Journal Classification (ASJC) codes

  • Control and Systems Engineering
  • Software
  • Computer Vision and Pattern Recognition
  • Computer Science Applications

Fingerprint

Dive into the research topics of 'Risk-Aware Non-Myopic Motion Planner for Large-Scale Robotic Swarm Using CVaR Constraints'. Together they form a unique fingerprint.

Cite this