TY - GEN
T1 - Robust data map design using chance constrained optimization
AU - Laftchiev, Emil
AU - Lagoa, Constantino
AU - Brennan, Sean
PY - 2014
Y1 - 2014
N2 - This paper presents a chance constrained approach to extracting linear models from reference data to be used in subsequence identification or pattern matching. Due to the ordered nature of time series data, the extracted models are sequential, with feasible domains separated by transition points. In a sequence of models, a transition point is defined as the point where one model is invalid and the next model is valid. This study contributes a probabilistic description for transition points. This probabilistic framework identifies the transition points and corresponding models such that in the presence of white Gaussian noise during subsequence detection, the transitions will still be discernible. When compared to previous work in subsequence identification, the approach in this paper has several advantages. First, it provides a rigorous selection criteria for each transition point. Second, the probabilistic method described herein effectively incorporates a priori knowledge about the expected noise characteristics. Lastly, employing this criteria in reference map creation leads to the extraction of compact model reference maps that further speed up computation online. The presented algorithm is tested using vehicle pitch data obtained from a vehicle's Inertial Measurement Unit during road data collection experiments. When compared to previously published model (in)validation work, the testing shows that the extracted reference map here is much more compact and correspondingly computationally efficient for subsequence identification.
AB - This paper presents a chance constrained approach to extracting linear models from reference data to be used in subsequence identification or pattern matching. Due to the ordered nature of time series data, the extracted models are sequential, with feasible domains separated by transition points. In a sequence of models, a transition point is defined as the point where one model is invalid and the next model is valid. This study contributes a probabilistic description for transition points. This probabilistic framework identifies the transition points and corresponding models such that in the presence of white Gaussian noise during subsequence detection, the transitions will still be discernible. When compared to previous work in subsequence identification, the approach in this paper has several advantages. First, it provides a rigorous selection criteria for each transition point. Second, the probabilistic method described herein effectively incorporates a priori knowledge about the expected noise characteristics. Lastly, employing this criteria in reference map creation leads to the extraction of compact model reference maps that further speed up computation online. The presented algorithm is tested using vehicle pitch data obtained from a vehicle's Inertial Measurement Unit during road data collection experiments. When compared to previously published model (in)validation work, the testing shows that the extracted reference map here is much more compact and correspondingly computationally efficient for subsequence identification.
UR - http://www.scopus.com/inward/record.url?scp=84905695635&partnerID=8YFLogxK
UR - http://www.scopus.com/inward/citedby.url?scp=84905695635&partnerID=8YFLogxK
U2 - 10.1109/ACC.2014.6858839
DO - 10.1109/ACC.2014.6858839
M3 - Conference contribution
AN - SCOPUS:84905695635
SN - 9781479932726
T3 - Proceedings of the American Control Conference
SP - 4573
EP - 4580
BT - 2014 American Control Conference, ACC 2014
PB - Institute of Electrical and Electronics Engineers Inc.
T2 - 2014 American Control Conference, ACC 2014
Y2 - 4 June 2014 through 6 June 2014
ER -