TY - GEN
T1 - Robust design optimization of steel moment resisting frame under ground motion uncertainty
AU - Liu, Zhifeng
AU - Atamturktur, Sez
AU - Juang, Hsein
PY - 2013
Y1 - 2013
N2 - In the design of a steel moment resisting frame, uncertainties may arise from a variety of sources, such as ground motion, mass, and damping ratio, etc., that may cause variation in seismic demand and capacity. These uncertainties need to be taken into account to ensure the desired margin of safety for required performance objectives. FEMA 350, a reliability based design guideline, can be employed to mitigate safety concerns by satisfying minimum confidence level requirements for performance objectives. However, in these existing design codes, variation in seismic demand is not explicitly considered in the design process. According to the FEMA 350 procedure, seismic demand is calculated with a suite of seismic records, considering ground motion variability, while only median demand is used in the subsequent calculation of demand to the capacity ratio and confidence level. In this paper, variation of seismic demand due to ground motion variability is considered explicitly as a robustness measure, and the mean value of seismic demand is treated as a safety measure. A Robust Design Optimization of steel moment resisting frame methodology is proposed, which is featured as a multi-objective optimization problem with the variation of seismic demand, mean value of seismic demand and cost as three objectives. In the optimization problem, optimal steel section sizes are sought to minimize these three conflicting objectives. The proposed methodology is then demonstrated through a multi-story multi-bay steel moment resisting frame design and solved with a Non-dominated Sorting Genetic Algorithm-II. With three competing objectives, the proposed methodology provides a set of designs in the form of a Pareto Front, which is robust, safe and economical. Furthermore a uniformity drift ratio requirement is proposed to ensure efficient designs.
AB - In the design of a steel moment resisting frame, uncertainties may arise from a variety of sources, such as ground motion, mass, and damping ratio, etc., that may cause variation in seismic demand and capacity. These uncertainties need to be taken into account to ensure the desired margin of safety for required performance objectives. FEMA 350, a reliability based design guideline, can be employed to mitigate safety concerns by satisfying minimum confidence level requirements for performance objectives. However, in these existing design codes, variation in seismic demand is not explicitly considered in the design process. According to the FEMA 350 procedure, seismic demand is calculated with a suite of seismic records, considering ground motion variability, while only median demand is used in the subsequent calculation of demand to the capacity ratio and confidence level. In this paper, variation of seismic demand due to ground motion variability is considered explicitly as a robustness measure, and the mean value of seismic demand is treated as a safety measure. A Robust Design Optimization of steel moment resisting frame methodology is proposed, which is featured as a multi-objective optimization problem with the variation of seismic demand, mean value of seismic demand and cost as three objectives. In the optimization problem, optimal steel section sizes are sought to minimize these three conflicting objectives. The proposed methodology is then demonstrated through a multi-story multi-bay steel moment resisting frame design and solved with a Non-dominated Sorting Genetic Algorithm-II. With three competing objectives, the proposed methodology provides a set of designs in the form of a Pareto Front, which is robust, safe and economical. Furthermore a uniformity drift ratio requirement is proposed to ensure efficient designs.
UR - http://www.scopus.com/inward/record.url?scp=84881379336&partnerID=8YFLogxK
UR - http://www.scopus.com/inward/citedby.url?scp=84881379336&partnerID=8YFLogxK
U2 - 10.1007/978-1-4614-6555-3_50
DO - 10.1007/978-1-4614-6555-3_50
M3 - Conference contribution
AN - SCOPUS:84881379336
SN - 9781461465546
T3 - Topics in Dynamics of Civil Structures - Proceedings of the 31st IMAC, A Conference on Structural Dynamics, 2013
SP - 461
EP - 470
BT - Topics in Dynamics of Civil Structures - Proceedings of the 31st IMAC, A Conference on Structural Dynamics, 2013
T2 - 31st IMAC, A Conference on Structural Dynamics, 2013
Y2 - 11 February 2013 through 14 February 2013
ER -