Robust Output Feedback MPC with Reduced Conservatism under Ellipsoidal Uncertainty

Tianchen Ji, Junyi Geng, Katherine Driggs-Campbell

Research output: Chapter in Book/Report/Conference proceedingConference contribution

Abstract

Robust design of autonomous systems under uncertainty is an important yet challenging problem. This work proposes a robust controller that consists of a state estimator and a tube based predictive control law. The class of linear systems under ellipsoidal uncertainty is considered. In contrast to existing approaches based on polytopic sets, the constraint tightening is directly computed from the ellipsoidal sets of disturbances without over-approximation, thus leading to less conservative bounds. Conditions to guarantee robust constraint satisfaction and robust stability are presented. Further, by avoiding the usage of Minkowski sum in set computation, the proposed approach can also scale up to high-dimensional systems. The results are illustrated by examples.

Original languageEnglish (US)
Title of host publication2022 IEEE 61st Conference on Decision and Control, CDC 2022
PublisherInstitute of Electrical and Electronics Engineers Inc.
Pages1782-1789
Number of pages8
ISBN (Electronic)9781665467612
DOIs
StatePublished - 2022
Event61st IEEE Conference on Decision and Control, CDC 2022 - Cancun, Mexico
Duration: Dec 6 2022Dec 9 2022

Publication series

NameProceedings of the IEEE Conference on Decision and Control
Volume2022-December
ISSN (Print)0743-1546
ISSN (Electronic)2576-2370

Conference

Conference61st IEEE Conference on Decision and Control, CDC 2022
Country/TerritoryMexico
CityCancun
Period12/6/2212/9/22

All Science Journal Classification (ASJC) codes

  • Control and Systems Engineering
  • Modeling and Simulation
  • Control and Optimization

Fingerprint

Dive into the research topics of 'Robust Output Feedback MPC with Reduced Conservatism under Ellipsoidal Uncertainty'. Together they form a unique fingerprint.

Cite this