Abstract
In this paper, we present block preconditioners for a stabilized discretization of the poroelastic equations developed in [C. Rodrigo, X. Hu, P. Ohm, J. Adler, F. Gaspar, and L. Zikatanov, Comput. Methods Appl. Mech. Engrg., 341 (2018), pp. 467-484]. The discretization is proved to be well-posed with respect to the physical and discretization parameters and thus provides a framework to develop preconditioners that are robust with respect to such parameters as well. We construct both norm-equivalent (diagonal) and field-of-value-equivalent (triangular) preconditioners for both the stabilized discretization and a perturbation of the stabilized discretization, which leads to a smaller overall problem after static condensation. Numerical tests for both two-and three-dimensional problems confirm the robustness of the block preconditioners with respect to the physical and discretization parameters.
Original language | English (US) |
---|---|
Pages (from-to) | B761-B791 |
Journal | SIAM Journal on Scientific Computing |
Volume | 42 |
Issue number | 3 |
DOIs | |
State | Published - 2020 |
All Science Journal Classification (ASJC) codes
- Computational Mathematics
- Applied Mathematics