Robust space-time extraction of ventricular surface evolution using multi-phase level sets

Corina S. Drapaca, Valerie Cardenas, Colin Studholme

Research output: Contribution to journalConference articlepeer-review

Abstract

This paper focuses on the problem of accurately extracting the CSF-tissue boundary, particularly around the ventricular surface, from serial structural MRI of the brain acquired in imaging studies of aging and dementia. This is a challenging problem because of the common occurrence of peri-ventricular lesions which locally alter the appearance of white matter. We examine a level set approach which evolves a four dimensional description of the ventricular surface over time. This has the advantage of allowing constraints on the contour in the temporal dimension, improving the consistency of the extracted object over time. We follow the approach proposed by Chan and Vese which is based on the Mumford and Shah model and implemented using the Osher and Sethian level set method. We have extended this to the 4 dimensional case to propagate a 4D contour toward the tissue boundaries through the evolution of a 5D implicit function. For convergence we use region-based information provided by the image rather than the gradient of the image. This is adapted to allow intensity contrast changes between time frames in the MRI sequence. Results on time sequences of 3D brain MR images are presented and discussed.

Original languageEnglish (US)
Pages (from-to)538-548
Number of pages11
JournalProceedings of SPIE - The International Society for Optical Engineering
Volume5370 I
DOIs
StatePublished - 2004
EventProgress in Biomedical Optics and Imaging - Medical Imaging 2004: Imaging Processing - San Diego, CA, United States
Duration: Feb 16 2004Feb 19 2004

All Science Journal Classification (ASJC) codes

  • Electronic, Optical and Magnetic Materials
  • Condensed Matter Physics
  • Computer Science Applications
  • Applied Mathematics
  • Electrical and Electronic Engineering

Fingerprint

Dive into the research topics of 'Robust space-time extraction of ventricular surface evolution using multi-phase level sets'. Together they form a unique fingerprint.

Cite this