@inproceedings{5757a42a75314b4593e760ab20446116,
title = "Robustness Optimization of Nanophotonic Devices Using Deep Learning",
abstract = "Realizing state-of-the-art metasurfaces depends on meeting strict geometric tolerances due to their inherent sensitivity to structural variations. A design may have extremely good performance in simulation which is lost when undergoing fabrication. We present how a Deep Learning-augmented multiobjective optimization method can be used for designing metasurfaces which are robust to a common type of manufacturing defect, namely erosion and dilation.",
author = "Jenkins, {Ronald P.} and Campbell, {Sawyer D.} and Werner, {Pingjuan L.} and Werner, {Douglas H.}",
note = "Publisher Copyright: {\textcopyright} 2022 IEEE.; 2022 IEEE International Symposium on Antennas and Propagation and USNC-URSI Radio Science Meeting, AP-S/URSI 2022 ; Conference date: 10-07-2022 Through 15-07-2022",
year = "2022",
doi = "10.1109/AP-S/USNC-URSI47032.2022.9887138",
language = "English (US)",
series = "2022 IEEE International Symposium on Antennas and Propagation and USNC-URSI Radio Science Meeting, AP-S/URSI 2022 - Proceedings",
publisher = "Institute of Electrical and Electronics Engineers Inc.",
pages = "487--488",
booktitle = "2022 IEEE International Symposium on Antennas and Propagation and USNC-URSI Radio Science Meeting, AP-S/URSI 2022 - Proceedings",
address = "United States",
}