Role of canopy-scale photochemistry in modifying biogenic-atmosphere exchange of reactive terpene species: Results from the CELTIC field study

Craig Stroud, Paul Makar, Thomas Karl, Alex Guenther, Chris Geron, Andrew Turnipseed, Eiko Nemitz, Brad Baker, Mark Potosnak, Jose D. Fuentes

Research output: Contribution to journalReview articlepeer-review

74 Scopus citations

Abstract

A one-dimensional canopy model was used to quantify the impact of photochemistry in modifying biosphere-atmosphere exchange of trace gases. Canopy escape efficiencies, defined as the fraction of emission that escapes into the well-mixed boundary layer, were calculated for reactive terpene species. The modeled processes of emission, photochemistry, diffusive transport, and deposition were highly constrained based on intensive observations collected in a Loblolly Pine plantation at Duke Forest, North Carolina, during the CELTIC field study. Canopy top fluxes for isoprene and α,β-pinene were not significantly altered by photochemistry as calculated escape efficiencies were greater than 0.90 for both species, β-caryophyllene emission and photochemistry were added to the canopy model as a surrogate for the reactive sesquiterpene class of species, β-caryopyllene escape efficiencies of 0.30 were calculated for midday summertime conditions. Urbanization scenarios were also performed to assess the impact of pollution on modifying biosphere-atmosphere exchange. Modest changes in escape efficiencies were calculated for a wide range of anthropogenic hydrocarbon and NOx mixing ratios suggesting a simple parameterization of escape efficiency in terms of grid cell NOx may be possible for incorporating the impact of canopy scale photochemistry within biogenic emission processing systems for regional air quality and climate models. The inferred magnitude of sesquiterpene ozonolysis reactions has important implications on both daytime and nighttime radical formation in the canopy.

Original languageEnglish (US)
Article numberD17303
Pages (from-to)149-162
Number of pages14
JournalJournal of Geophysical Research D: Atmospheres
Volume110
Issue number17
DOIs
StatePublished - Sep 16 2005

All Science Journal Classification (ASJC) codes

  • Geophysics
  • Forestry
  • Oceanography
  • Aquatic Science
  • Ecology
  • Water Science and Technology
  • Soil Science
  • Geochemistry and Petrology
  • Earth-Surface Processes
  • Atmospheric Science
  • Earth and Planetary Sciences (miscellaneous)
  • Space and Planetary Science
  • Palaeontology

Fingerprint

Dive into the research topics of 'Role of canopy-scale photochemistry in modifying biogenic-atmosphere exchange of reactive terpene species: Results from the CELTIC field study'. Together they form a unique fingerprint.

Cite this