TY - JOUR
T1 - Role of insulin in the regulation of leucine kinetics in the conscious dog
AU - Abumrad, N. N.
AU - Jefferson, L. S.
AU - Rannels, S. R.
AU - Williams, P. E.
AU - Cherrington, A. D.
AU - Lacy, W. W.
PY - 1982
Y1 - 1982
N2 - To study the effect of insulin on leucine kinetics, three groups of conscious dogs were studied after an overnight fast (16-18 h). One, saline-infused group (n = 5), served as control. The other two groups were infused with somatostatin and constant replacement amount of glucagon; one group (n = 6) received no insulin replacement, to produce acute insulin deficiency, and the other (n = 6) was constantly replaced with 600 μU/kg per min insulin, to produce twice basal hyperinsulinemia. Hepatic and extrahepatic splanchnic (gut) balance of leucine and α-ketoisocaproate (KIC) were calculated using the arteriovenous difference technique. L,4,5,[3H]Leucine was used to measure the rates (micromoles per kilogram per minute) of appearance (Ra) and disappearance (Rd), and clearance (Cl) of plasma leucine (milliliters per kilogram per minute). Saline infusion for 7 h resulted in isotopic steady state, where Ra and Rd were equal (3.2±0.2 μmol/kg per min). Acute insulin withdrawal of 4-h duration caused the plasma leucine to increase by 40% (P < 0.005). This change was caused by a decrease in the outflow of leucine (Cl) from the plasma, since Ra did not change. The net hepatic release of the amino acid (0.24±0.03 μmol/kg per min) did not change significantly; the arterio-deep femoral venous differences of leucine (-10±1 μmol/liter) and KIC (-12±2 μmol/liter) did not change significantly indicating net release of the amino and ketoacids across the hindlimb. Selective twice basal hyperinsulinemia resulted in a 36% drop in plasma leucine (from control levels of 128±8 to 82±7 μmol/liter, P < 0.005) within 4 h. This was accompanied by a 15% reduction in Ra and a 56% rise in clearance (P < 0.001, both). Net hepatic leucine production and net release of leucine and KIC across the hindlimb fell markedly. These studies indicate that physiologic changes in circulating insulin levels result in a differential dose-dependent effect on total body leucine metabolism in the intact animal. Acute insulin withdrawal exerts no effect on leucine rate of appearance, while at twice basal levels, insulin inhibited leucine rate of appearance and stimulated its rate of disappearance.
AB - To study the effect of insulin on leucine kinetics, three groups of conscious dogs were studied after an overnight fast (16-18 h). One, saline-infused group (n = 5), served as control. The other two groups were infused with somatostatin and constant replacement amount of glucagon; one group (n = 6) received no insulin replacement, to produce acute insulin deficiency, and the other (n = 6) was constantly replaced with 600 μU/kg per min insulin, to produce twice basal hyperinsulinemia. Hepatic and extrahepatic splanchnic (gut) balance of leucine and α-ketoisocaproate (KIC) were calculated using the arteriovenous difference technique. L,4,5,[3H]Leucine was used to measure the rates (micromoles per kilogram per minute) of appearance (Ra) and disappearance (Rd), and clearance (Cl) of plasma leucine (milliliters per kilogram per minute). Saline infusion for 7 h resulted in isotopic steady state, where Ra and Rd were equal (3.2±0.2 μmol/kg per min). Acute insulin withdrawal of 4-h duration caused the plasma leucine to increase by 40% (P < 0.005). This change was caused by a decrease in the outflow of leucine (Cl) from the plasma, since Ra did not change. The net hepatic release of the amino acid (0.24±0.03 μmol/kg per min) did not change significantly; the arterio-deep femoral venous differences of leucine (-10±1 μmol/liter) and KIC (-12±2 μmol/liter) did not change significantly indicating net release of the amino and ketoacids across the hindlimb. Selective twice basal hyperinsulinemia resulted in a 36% drop in plasma leucine (from control levels of 128±8 to 82±7 μmol/liter, P < 0.005) within 4 h. This was accompanied by a 15% reduction in Ra and a 56% rise in clearance (P < 0.001, both). Net hepatic leucine production and net release of leucine and KIC across the hindlimb fell markedly. These studies indicate that physiologic changes in circulating insulin levels result in a differential dose-dependent effect on total body leucine metabolism in the intact animal. Acute insulin withdrawal exerts no effect on leucine rate of appearance, while at twice basal levels, insulin inhibited leucine rate of appearance and stimulated its rate of disappearance.
UR - http://www.scopus.com/inward/record.url?scp=0020425589&partnerID=8YFLogxK
UR - http://www.scopus.com/inward/citedby.url?scp=0020425589&partnerID=8YFLogxK
U2 - 10.1172/JCI110690
DO - 10.1172/JCI110690
M3 - Article
C2 - 6127347
AN - SCOPUS:0020425589
SN - 0042-1215
VL - 70
SP - 1031
EP - 1041
JO - Unknown Journal
JF - Unknown Journal
IS - 5
ER -