TY - JOUR
T1 - Role of renin-angiotensin system in hypotension-evoked thirst
T2 - Studies with hydralazine
AU - Stocker, Sean D.
AU - Sved, Alan F.
AU - Stricker, Edward M.
PY - 2000
Y1 - 2000
N2 - Injection of rats either with diazoxide (25 mg/kg iv), isoproterenol (0.33 mg/kg sc), or hydralazine (HDZ) (10 mg/kg ip) decreased arterial blood pressure from ~120 to 70-80 mmHg and stimulated renin secretion. However, diazoxide and isoproterenol treatments each stimulated water ingestion, whereas HDZ treatment did not. HDZ treatment did not reduce water intake evoked by systemic injection of hypertonic saline or 20% polyethylene glycol solution or by 24-h water deprivation, suggesting that HDZ treatment did not interfere with drinking behavior. In contrast, HDZ treatment markedly reduced water intake evoked by injection of diazoxide or isoproterenol or by intravenous infusion of renin. Furthermore, a highly significant correlation was observed when plasma ANG II levels were plotted as a function of plasma renin activity after intravenous infusion of renin and after diazoxide and isoproterenol treatments. However, values obtained after HDZ treatment alone or in combination with intravenous infusion of renin did not fall near the 99% confidence interval of the regression line, suggesting that HDZ treatment blocks ANG II production and/or promotes its clearance. Thus rats apparently do not increase water intake after HDZ treatment, because this drug interferes with the renin-angiotensin system. These results provide further evidence that arterial hypotension evokes thirst in rats predominantly by activation of the renin-angiotensin system.
AB - Injection of rats either with diazoxide (25 mg/kg iv), isoproterenol (0.33 mg/kg sc), or hydralazine (HDZ) (10 mg/kg ip) decreased arterial blood pressure from ~120 to 70-80 mmHg and stimulated renin secretion. However, diazoxide and isoproterenol treatments each stimulated water ingestion, whereas HDZ treatment did not. HDZ treatment did not reduce water intake evoked by systemic injection of hypertonic saline or 20% polyethylene glycol solution or by 24-h water deprivation, suggesting that HDZ treatment did not interfere with drinking behavior. In contrast, HDZ treatment markedly reduced water intake evoked by injection of diazoxide or isoproterenol or by intravenous infusion of renin. Furthermore, a highly significant correlation was observed when plasma ANG II levels were plotted as a function of plasma renin activity after intravenous infusion of renin and after diazoxide and isoproterenol treatments. However, values obtained after HDZ treatment alone or in combination with intravenous infusion of renin did not fall near the 99% confidence interval of the regression line, suggesting that HDZ treatment blocks ANG II production and/or promotes its clearance. Thus rats apparently do not increase water intake after HDZ treatment, because this drug interferes with the renin-angiotensin system. These results provide further evidence that arterial hypotension evokes thirst in rats predominantly by activation of the renin-angiotensin system.
UR - http://www.scopus.com/inward/record.url?scp=0033858025&partnerID=8YFLogxK
UR - http://www.scopus.com/inward/citedby.url?scp=0033858025&partnerID=8YFLogxK
U2 - 10.1152/ajpregu.2000.279.2.r576
DO - 10.1152/ajpregu.2000.279.2.r576
M3 - Article
C2 - 10938248
AN - SCOPUS:0033858025
SN - 0363-6119
VL - 279
SP - R576-R585
JO - American Journal of Physiology - Regulatory Integrative and Comparative Physiology
JF - American Journal of Physiology - Regulatory Integrative and Comparative Physiology
IS - 2 48-2
ER -