Role of shear stress-induced red blood cell released ATP in atherosclerosis

Yunpei Zhang, Haoyu Sun, Aayush Gandhi, Yong Du, Saman Ebrahimi, Yanyan Jiang, Sulei Xu, Hope Uwase, Alane Seidel, Sarah S. Bingaman, Amy C. Arnold, Christian Nguyen, Wei Ding, Matthew D. Woolard, Ryan Hobbs, Prosenjit Bagchi, Pingnian He

Research output: Contribution to journalArticlepeer-review

Abstract

Altered hemodynamics is a key factor for atherosclerosis. For decades, endothelial cell (EC) responses to fluid-generated wall shear stress have been the central focus for atherogenesis. However, circulating blood is not a cell-free fluid, it contains mechanosensitive red blood cells (RBCs) that are also subjected to altered hemodynamics and release a large amount of ATP, but their impact on atherosclerosis has been overlooked. The focus of this study is the role of shear stress (SS)-induced RBC-released ATP in atherosclerosis. Hypercholesterolemic mouse models with and without RBC-Pannexin 1 deletion were used for the study. Results showed that SS-induced release of ATP from RBCs was at lM concentrations, three-orders of magnitude higher than that from other cell types. Suppression of RBC-released ATP via deletion of Pannexin 1, a mechanosensitive ATP-permeable channel, reduced high-fat diet-induced aortic plaque burden by 40%–60%. Importantly, the location and the extent of aortic atherosclerotic lesions spatially matched with the ATP deposition profile at aortic wall predicted by a computational fluid dynamic (CFD) model. Furthermore, hypercholesterolemia increases EC susceptibility to ATP with potentiated increase in [Ca2 + ]i, an initial signaling for aortic EC barrier dysfunction, and an essential cause for lipid accumulation and inflammatory cell infiltration. The computational prediction also provides a physics-based explanation for RBC-released ATP-induced sex disparities in atherosclerosis. Our study reveals an important role of RBC-released ATP in the initiation and progression of atherosclerosis. These novel findings provide a more comprehensive view of how altered hemodynamics and systemic risk factors synergistically contribute to atherosclerosis.

Original languageEnglish (US)
Pages (from-to)H774-H791
JournalAmerican Journal of Physiology - Heart and Circulatory Physiology
Volume328
Issue number4
DOIs
StatePublished - Apr 2025

All Science Journal Classification (ASJC) codes

  • Physiology
  • Cardiology and Cardiovascular Medicine
  • Physiology (medical)

Fingerprint

Dive into the research topics of 'Role of shear stress-induced red blood cell released ATP in atherosclerosis'. Together they form a unique fingerprint.

Cite this