TY - JOUR
T1 - Roles of Cytosolic Glutamine Synthetases in Arabidopsis Development and Stress Responses
AU - Ji, Yuanyuan
AU - Li, Qiang
AU - Liu, Guosheng
AU - Selvaraj, Gopalan
AU - Zheng, Zhifu
AU - Zou, Jitao
AU - Wei, Yangdou
N1 - Publisher Copyright:
© The Author(s) 2019. Published by Oxford University Press on behalf of Japanese Society of Plant Physiologists. All rights reserved.
PY - 2019/3/1
Y1 - 2019/3/1
N2 - Glutamine (Gln) has as a central role in nitrogen (N) and carbon (C) metabolism. It is synthesized during assimilation of ammonium by cytosolic and plastidial glutamine synthetases (GS; EC 6.1.1.3). Arabidopsis thaliana has five cytosolic GS (GS1) encoding genes designated as GLN1;1-GLN1;5 and one plastidial GS (GS2) gene. In this report that concerns cytosolic GS, we show by analyzing single, double and triple mutants that single genes were dispensable for growth under laboratory conditions. However, loss of two or three GS1 isoforms impacted plant form, function and the capacity to tolerate abiotic stresses. The loss of GLN1;1, GLN1;2 and GLN1;3 resulted in a significant reduction of vegetative growth and seed size. In addition, we infer that GLN1;4 is essential for pollen viability but only in the absence of GLN1;1 and GLN1;3. Transcript profiling revealed that expression of GLN1;1, GLN1;2, GLN1;3 and GLN1;4 was repressed by salinity and cold stresses. Among all single gln1 mutants, growth of gln1;1 seedlings showed an enhanced sensitivity to the GS inhibitor phosphinothricin (PPT), as well as to cold and salinity treatments, suggesting a non-redundant role for GLN1;1. Furthermore, the increased sensitivity of gln1;1 mutants to methyl viologen was associated with an accelerated accumulation of reactive oxygen species (ROS) in the thylakoid of chloroplasts. Our data demonstrate, for the first time, an involvement of the cytosolic GS1 in modulating ROS homeostasis in chloroplasts. Collectively, the current study establishes a link between cytosolic Gln production and plant development, ROS production and stress tolerance.
AB - Glutamine (Gln) has as a central role in nitrogen (N) and carbon (C) metabolism. It is synthesized during assimilation of ammonium by cytosolic and plastidial glutamine synthetases (GS; EC 6.1.1.3). Arabidopsis thaliana has five cytosolic GS (GS1) encoding genes designated as GLN1;1-GLN1;5 and one plastidial GS (GS2) gene. In this report that concerns cytosolic GS, we show by analyzing single, double and triple mutants that single genes were dispensable for growth under laboratory conditions. However, loss of two or three GS1 isoforms impacted plant form, function and the capacity to tolerate abiotic stresses. The loss of GLN1;1, GLN1;2 and GLN1;3 resulted in a significant reduction of vegetative growth and seed size. In addition, we infer that GLN1;4 is essential for pollen viability but only in the absence of GLN1;1 and GLN1;3. Transcript profiling revealed that expression of GLN1;1, GLN1;2, GLN1;3 and GLN1;4 was repressed by salinity and cold stresses. Among all single gln1 mutants, growth of gln1;1 seedlings showed an enhanced sensitivity to the GS inhibitor phosphinothricin (PPT), as well as to cold and salinity treatments, suggesting a non-redundant role for GLN1;1. Furthermore, the increased sensitivity of gln1;1 mutants to methyl viologen was associated with an accelerated accumulation of reactive oxygen species (ROS) in the thylakoid of chloroplasts. Our data demonstrate, for the first time, an involvement of the cytosolic GS1 in modulating ROS homeostasis in chloroplasts. Collectively, the current study establishes a link between cytosolic Gln production and plant development, ROS production and stress tolerance.
UR - https://www.scopus.com/pages/publications/85062882116
UR - https://www.scopus.com/inward/citedby.url?scp=85062882116&partnerID=8YFLogxK
U2 - 10.1093/pcp/pcy235
DO - 10.1093/pcp/pcy235
M3 - Article
C2 - 30649517
AN - SCOPUS:85062882116
SN - 0032-0781
VL - 60
SP - 657
EP - 671
JO - Plant and Cell Physiology
JF - Plant and Cell Physiology
IS - 3
ER -