Roton pair density wave in a strong-coupling kagome superconductor

Hui Chen, Haitao Yang, Bin Hu, Zhen Zhao, Jie Yuan, Yuqing Xing, Guojian Qian, Zihao Huang, Geng Li, Yuhan Ye, Sheng Ma, Shunli Ni, Hua Zhang, Qiangwei Yin, Chunsheng Gong, Zhijun Tu, Hechang Lei, Hengxin Tan, Sen Zhou, Chengmin ShenXiaoli Dong, Binghai Yan, Ziqiang Wang, Hong Jun Gao

Research output: Contribution to journalArticlepeer-review

397 Scopus citations

Abstract

The transition metal kagome lattice materials host frustrated, correlated and topological quantum states of matter1–9. Recently, a new family of vanadium-based kagome metals, AV3Sb5 (A = K, Rb or Cs), with topological band structures has been discovered10,11. These layered compounds are nonmagnetic and undergo charge density wave transitions before developing superconductivity at low temperatures11–19. Here we report the observation of unconventional superconductivity and a pair density wave (PDW) in CsV3Sb5 using scanning tunnelling microscope/spectroscopy and Josephson scanning tunnelling spectroscopy. We find that CsV3Sb5 exhibits a V-shaped pairing gap Δ ~ 0.5 meV and is a strong-coupling superconductor (2Δ/kBTc ~ 5) that coexists with 4a0 unidirectional and 2a0 × 2a0 charge order. Remarkably, we discover a 3Q PDW accompanied by bidirectional 4a0/3 spatial modulations of the superconducting gap, coherence peak and gap depth in the tunnelling conductance. We term this novel quantum state a roton PDW associated with an underlying vortex–antivortex lattice that can account for the observed conductance modulations. Probing the electronic states in the vortex halo in an applied magnetic field, in strong field that suppresses superconductivity and in zero field above Tc, reveals that the PDW is a primary state responsible for an emergent pseudogap and intertwined electronic order. Our findings show striking analogies and distinctions to the phenomenology of high-Tc cuprate superconductors, and provide groundwork for understanding the microscopic origin of correlated electronic states and superconductivity in vanadium-based kagome metals.

Original languageEnglish (US)
Pages (from-to)222-228
Number of pages7
JournalNature
Volume599
Issue number7884
DOIs
StatePublished - Nov 11 2021

All Science Journal Classification (ASJC) codes

  • General

Fingerprint

Dive into the research topics of 'Roton pair density wave in a strong-coupling kagome superconductor'. Together they form a unique fingerprint.

Cite this