TY - GEN
T1 - Roughness effects on flow and heat transfer for additively manufactured channels
AU - Stimpson, Curtis K.
AU - Snyder, Jacob C.
AU - Thole, Karen A.
AU - Mongillo, Dominic
N1 - Publisher Copyright:
© Copyright 2015 by ASME.
PY - 2015
Y1 - 2015
N2 - Recent technological advances in the field of additive manufacturing (AM), particularly with direct metal laser sintering (DMLS), have increased the potential for building gas turbine components with AM. Using DMLS for turbine components broadens the design space and allows for increasingly small and complex geometries to be fabricated with little increase in time or cost. Challenges arise when attempting to evaluate the advantages of DMLS for specific applications, particularly because of how little is known regarding the effects of surface roughness. This paper presents pressure drop and heat transfer results of flow through small, as produced channels that have been manufactured using DMLS in an effort to better understand roughness. Ten different coupons made with DMLS all having multiple rectangular channels were evaluated in this study. Measurements were collected at various flow conditions and reduced to a friction factor and a Nusselt number. Results showed significant augmentation of these parameters compared to smooth channels, particularly with the friction factor for minichannels with small hydraulic diameters. However, augmentation of Nusselt number did not increase proportionally with the augmentation of the friction factor.
AB - Recent technological advances in the field of additive manufacturing (AM), particularly with direct metal laser sintering (DMLS), have increased the potential for building gas turbine components with AM. Using DMLS for turbine components broadens the design space and allows for increasingly small and complex geometries to be fabricated with little increase in time or cost. Challenges arise when attempting to evaluate the advantages of DMLS for specific applications, particularly because of how little is known regarding the effects of surface roughness. This paper presents pressure drop and heat transfer results of flow through small, as produced channels that have been manufactured using DMLS in an effort to better understand roughness. Ten different coupons made with DMLS all having multiple rectangular channels were evaluated in this study. Measurements were collected at various flow conditions and reduced to a friction factor and a Nusselt number. Results showed significant augmentation of these parameters compared to smooth channels, particularly with the friction factor for minichannels with small hydraulic diameters. However, augmentation of Nusselt number did not increase proportionally with the augmentation of the friction factor.
UR - http://www.scopus.com/inward/record.url?scp=84954164797&partnerID=8YFLogxK
UR - http://www.scopus.com/inward/citedby.url?scp=84954164797&partnerID=8YFLogxK
U2 - 10.1115/GT2015-43940
DO - 10.1115/GT2015-43940
M3 - Conference contribution
AN - SCOPUS:84954164797
T3 - Proceedings of the ASME Turbo Expo
BT - Heat Transfer
PB - American Society of Mechanical Engineers (ASME)
T2 - ASME Turbo Expo 2015: Turbine Technical Conference and Exposition, GT 2015
Y2 - 15 June 2015 through 19 June 2015
ER -