TY - GEN
T1 - Sampling in uniqueness from the potts and random-cluster models on random regular graphs
AU - Blanca, Antonio
AU - Galanis, Andreas
AU - Goldberg, Leslie Ann
AU - Štefankovic, Daniel
AU - Vigoda, Eric
AU - Yang, Kuan
N1 - Publisher Copyright:
© 2018 Aditya Bhaskara and Srivatsan Kumar.
PY - 2018/8/1
Y1 - 2018/8/1
N2 - We consider the problem of sampling from the Potts model on random regular graphs. It is conjectured that sampling is possible when the temperature of the model is in the so-called uniqueness regime of the regular tree, but positive algorithmic results have been for the most part elusive. In this paper, for all integers q ≥ 3 and Δ ≥ 3, we develop algorithms that produce samples within error o(1) from the q-state Potts model on random Δ-regular graphs, whenever the temperature is in uniqueness, for both the ferromagnetic and antiferromagnetic cases. The algorithm for the antiferromagnetic Potts model is based on iteratively adding the edges of the graph and resampling a bichromatic class that contains the endpoints of the newly added edge. Key to the algorithm is how to perform the resampling step efficiently since bichromatic classes can potentially induce linear-sized components. To this end, we exploit the tree uniqueness to show that the average growth of bichromatic components is typically small, which allows us to use correlation decay algorithms for the resampling step. While the precise uniqueness threshold on the tree is not known for general values of q and Δ in the antiferromagnetic case, our algorithm works throughout uniqueness regardless of its value. In the case of the ferromagnetic Potts model, we are able to simplify the algorithm significantly by utilising the random-cluster representation of the model. In particular, we demonstrate that a percolation-type algorithm succeeds in sampling from the random-cluster model with parameters p, q on random Δ-regular graphs for all values of q 1 and p < pc(q, Δ), where pc(q, Δ) corresponds to a uniqueness threshold for the model on the Δ-regular tree. When restricted to integer values of q, this yields a simplified algorithm for the ferromagnetic Potts model on random Δ-regular graphs.
AB - We consider the problem of sampling from the Potts model on random regular graphs. It is conjectured that sampling is possible when the temperature of the model is in the so-called uniqueness regime of the regular tree, but positive algorithmic results have been for the most part elusive. In this paper, for all integers q ≥ 3 and Δ ≥ 3, we develop algorithms that produce samples within error o(1) from the q-state Potts model on random Δ-regular graphs, whenever the temperature is in uniqueness, for both the ferromagnetic and antiferromagnetic cases. The algorithm for the antiferromagnetic Potts model is based on iteratively adding the edges of the graph and resampling a bichromatic class that contains the endpoints of the newly added edge. Key to the algorithm is how to perform the resampling step efficiently since bichromatic classes can potentially induce linear-sized components. To this end, we exploit the tree uniqueness to show that the average growth of bichromatic components is typically small, which allows us to use correlation decay algorithms for the resampling step. While the precise uniqueness threshold on the tree is not known for general values of q and Δ in the antiferromagnetic case, our algorithm works throughout uniqueness regardless of its value. In the case of the ferromagnetic Potts model, we are able to simplify the algorithm significantly by utilising the random-cluster representation of the model. In particular, we demonstrate that a percolation-type algorithm succeeds in sampling from the random-cluster model with parameters p, q on random Δ-regular graphs for all values of q 1 and p < pc(q, Δ), where pc(q, Δ) corresponds to a uniqueness threshold for the model on the Δ-regular tree. When restricted to integer values of q, this yields a simplified algorithm for the ferromagnetic Potts model on random Δ-regular graphs.
UR - http://www.scopus.com/inward/record.url?scp=85052442828&partnerID=8YFLogxK
UR - http://www.scopus.com/inward/citedby.url?scp=85052442828&partnerID=8YFLogxK
U2 - 10.4230/LIPIcs.APPROX-RANDOM.2018.33
DO - 10.4230/LIPIcs.APPROX-RANDOM.2018.33
M3 - Conference contribution
AN - SCOPUS:85052442828
SN - 9783959770859
T3 - Leibniz International Proceedings in Informatics, LIPIcs
BT - Approximation, Randomization, and Combinatorial Optimization. Algorithms and Techniques - 21st International Workshop, APPROX 2018, and 22nd International Workshop, RANDOM 2018
A2 - Blais, Eric
A2 - Rolim, Jose D. P.
A2 - Steurer, David
A2 - Jansen, Klaus
PB - Schloss Dagstuhl- Leibniz-Zentrum fur Informatik GmbH, Dagstuhl Publishing
T2 - 21st International Workshop on Approximation Algorithms for Combinatorial Optimization Problems, APPROX 2018 and the 22nd International Workshop on Randomization and Computation, RANDOM 2018
Y2 - 20 August 2018 through 22 August 2018
ER -