SAS Simulations with Procedural Texture and the Point-based Sonar Scattering Model

Shawn F. Johnson, Daniel C. Brown

Research output: Chapter in Book/Report/Conference proceedingConference contribution

11 Scopus citations

Abstract

Recent work has demonstrated the efficacy of Procedural Techniques for simulation of realistic textures emulating rippled-sand and random roughness seafloors, as well as bioturbation by fish feeding pits. Separately, recent work has presented a sonar time series model, which has been shown to agree with theory for the mean, mean square, and spatial coherence of the roughness-scattered acoustic field. In this work, we apply these state of the art environmental generation techniques, inspired by the computer graphics industry, for generation of realistic seafloor textures, combined with the massive parallelization afforded by modern graphics processing units to compute acoustic models, for generation of simulated sonar time series. The resulting time series are then demonstrated to be suitable for coherent synthetic aperture signal processing resulting in a high-fidelity simulated SAS image.

Original languageEnglish (US)
Title of host publicationOCEANS 2018 MTS/IEEE Charleston, OCEAN 2018
PublisherInstitute of Electrical and Electronics Engineers Inc.
ISBN (Electronic)9781538648148
DOIs
StatePublished - Jan 7 2019
EventOCEANS 2018 MTS/IEEE Charleston, OCEANS 2018 - Charleston, United States
Duration: Oct 22 2018Oct 25 2018

Publication series

NameOCEANS 2018 MTS/IEEE Charleston, OCEAN 2018

Conference

ConferenceOCEANS 2018 MTS/IEEE Charleston, OCEANS 2018
Country/TerritoryUnited States
CityCharleston
Period10/22/1810/25/18

All Science Journal Classification (ASJC) codes

  • Renewable Energy, Sustainability and the Environment
  • Oceanography

Fingerprint

Dive into the research topics of 'SAS Simulations with Procedural Texture and the Point-based Sonar Scattering Model'. Together they form a unique fingerprint.

Cite this