Scaling sealing effectiveness in a stator-rotor cavity for differing blade spans

Reid A. Berdanier, Iván Monge-Concepción, Brian F. Knisely, Michael D. Barringer, Karen A. Thole, Eric A. Grover

Research output: Contribution to journalArticlepeer-review

28 Scopus citations

Abstract

As engine development continues to advance toward increased efficiency and reduced fuel consumption, efficient use of compressor bypass cooling flow becomes increasingly important. In particular, optimal use of compressor bypass flow yields an overall reduction of harmful emissions. Cooling flows used for cavity sealing between stages are critical to the engine and must be maintained to prevent damaging ingestion from the hot gas path. To assess cavity seals, the present study utilizes a one-stage turbine with true-scale engine hardware operated at engine-representative rotational Reynolds number and Mach number. Past experiments have made use of part-span (PS) rather than full-span (FS) blades to reduce flow rate requirements for the test rig; however, such decisions raise questions about potential influences of the blade span on sealing effectiveness measurements in the rim cavity. For this study, a tracer gas facilitates sealing effectiveness measurements in the rim cavity to compare data collected with FS engine airfoils and simplified, PS airfoils. The results from this study show sealing effectiveness does not scale as a function of relative purge flow with respect to main gas path flow rate when airfoil span is changed. However, scaling the sealing effectiveness for differing spans can be achieved if the fully purged flow rate is known. Results also suggest reductions of purge flow may have a relatively small loss of seal performance if the design is already near a fully purged condition. Rotor tip clearance is shown to have no effect on measured sealing effectiveness.

Original languageEnglish (US)
Article number051007
JournalJournal of Turbomachinery
Volume141
Issue number5
DOIs
StatePublished - May 1 2019

All Science Journal Classification (ASJC) codes

  • Mechanical Engineering

Fingerprint

Dive into the research topics of 'Scaling sealing effectiveness in a stator-rotor cavity for differing blade spans'. Together they form a unique fingerprint.

Cite this