TY - JOUR
T1 - Schizophrenia risk ZNF804A interacts with its associated proteins to modulate dendritic morphology and synaptic development
AU - Dong, Fengping
AU - Mao, Joseph
AU - Chen, Miranda
AU - Yoon, Joy
AU - Mao, Yingwei
N1 - Publisher Copyright:
© 2021, The Author(s).
PY - 2021/12
Y1 - 2021/12
N2 - Schizophrenia (SZ) is a devastating brain disease that affects about 1% of world population. Among the top genetic associations, zinc finger protein 804A (ZNF804A) gene encodes a zinc finger protein, associated with SZ and biolar disorder (BD). Copy number variants (CNVs) of ZNF804A have been observed in patients with autism spectrum disorders (ASDs), anxiety disorder, and BD, suggesting that ZNF804A is a dosage sensitive gene for brain development. However, its molecular functions have not been fully determined. Our previous interactomic study revealed that ZNF804A interacts with multiple proteins to control protein translation and neural development. ZNF804A is localized in the cytoplasm and neurites in the human cortex and is expressed in various types of neurons, including pyramidal, dopaminergic, GABAergic, and Purkinje neurons in mouse brain. To further examine the effect of gene dosage of ZNF804A on neurite morphology, both knockdown and overexpression of ZNF804A in primary neuronal cells significantly attenuate dendritic complex and spine formation. To determine the factors mediating these phenotypes, interestingly, three binding proteins of ZNF804A, galectin 1 (LGALS1), fasciculation and elongation protein zeta 1 (FEZ1) and ribosomal protein SA (RPSA), show different effects on reversing the deficits. LGALS1 and FEZ1 stimulate neurite outgrowth at basal level but RPSA shows no effect. Intriguingly, LGALS1 but not FEZ1, reverses the neurite outgrowth deficits induced by ZNF804A knockdown. However, FEZ1 and RPSA but not LGALS1, can ameliorate ZNF804A overexpression-mediated dendritic abnormalities. Thus, our results uncover a critical post-mitotic role of ZNF804A in neurite and synaptic development relevant to neurodevelopmental pathologies.
AB - Schizophrenia (SZ) is a devastating brain disease that affects about 1% of world population. Among the top genetic associations, zinc finger protein 804A (ZNF804A) gene encodes a zinc finger protein, associated with SZ and biolar disorder (BD). Copy number variants (CNVs) of ZNF804A have been observed in patients with autism spectrum disorders (ASDs), anxiety disorder, and BD, suggesting that ZNF804A is a dosage sensitive gene for brain development. However, its molecular functions have not been fully determined. Our previous interactomic study revealed that ZNF804A interacts with multiple proteins to control protein translation and neural development. ZNF804A is localized in the cytoplasm and neurites in the human cortex and is expressed in various types of neurons, including pyramidal, dopaminergic, GABAergic, and Purkinje neurons in mouse brain. To further examine the effect of gene dosage of ZNF804A on neurite morphology, both knockdown and overexpression of ZNF804A in primary neuronal cells significantly attenuate dendritic complex and spine formation. To determine the factors mediating these phenotypes, interestingly, three binding proteins of ZNF804A, galectin 1 (LGALS1), fasciculation and elongation protein zeta 1 (FEZ1) and ribosomal protein SA (RPSA), show different effects on reversing the deficits. LGALS1 and FEZ1 stimulate neurite outgrowth at basal level but RPSA shows no effect. Intriguingly, LGALS1 but not FEZ1, reverses the neurite outgrowth deficits induced by ZNF804A knockdown. However, FEZ1 and RPSA but not LGALS1, can ameliorate ZNF804A overexpression-mediated dendritic abnormalities. Thus, our results uncover a critical post-mitotic role of ZNF804A in neurite and synaptic development relevant to neurodevelopmental pathologies.
UR - http://www.scopus.com/inward/record.url?scp=85099376152&partnerID=8YFLogxK
UR - http://www.scopus.com/inward/citedby.url?scp=85099376152&partnerID=8YFLogxK
U2 - 10.1186/s13041-021-00729-2
DO - 10.1186/s13041-021-00729-2
M3 - Article
C2 - 33446247
AN - SCOPUS:85099376152
SN - 1756-6606
VL - 14
JO - Molecular Brain
JF - Molecular Brain
IS - 1
M1 - 12
ER -