Abstract
A novel class of fluid sensors is proposed based on monitoring the optical properties of multi-section chiral sculptured thin films (STFs) that function as spectral reflection holes. Using a nominal model that treats a chiral STF as a two-phase composite material with locally biaxial dielectric properties, we predict that the presence of a fluid in the porous film results in a red-shift of the spectral holes. Several device operation modes are proposed, and their relative merits are compared. Proof-of-concept experiments with both circularly polarized and unpolarized incident light confirm the red-shift of the spectral holes, and demonstrate operation in a practical situation.
Original language | English (US) |
---|---|
Pages (from-to) | 33-46 |
Number of pages | 14 |
Journal | Optics Communications |
Volume | 194 |
Issue number | 1-3 |
DOIs | |
State | Published - Jul 1 2001 |
All Science Journal Classification (ASJC) codes
- Electronic, Optical and Magnetic Materials
- Atomic and Molecular Physics, and Optics
- Physical and Theoretical Chemistry
- Electrical and Electronic Engineering