Abstract
Whether Earth materials exhibit frictional creep or catastrophic failure is a crucial but unresolved problem in predicting landslide and earthquake hazards. Here, we show that field-scale observations of sliding velocity and pore water pressure at two creeping landslides are explained by velocity-strengthening friction, in close agreement with laboratory measurements on similar materials. This suggests that the rate-strengthening friction commonly measured in clay-rich materials may govern episodic slow slip in landslides, in addition to tectonic faults. Further, our results show more generally that transient slow slip can arise in velocity-strengthening materials from modulation of effective normal stress through pore pressure fluctuations. This challenges the idea that episodic slow slip requires a narrow range of transitional frictional properties near the stability threshold, or pore pressure feedbacks operating on initially unstable frictional slip.
Original language | English (US) |
---|---|
Article number | eadq9399 |
Journal | Science Advances |
Volume | 10 |
Issue number | 42 |
DOIs | |
State | Published - Oct 18 2024 |
All Science Journal Classification (ASJC) codes
- General