TY - JOUR
T1 - Second harmonic generation analysis of early Achilles tendinosis in response to in vivo mechanical loading
AU - Abraham, Thomas
AU - Fong, Gloria
AU - Scott, Alex
N1 - Funding Information:
The study was funded by the University of British Columbia operating funds. Infrastructure support was provided by the Centre for Hip Health and Mobility and the James Hogg Centre for Cardiovascular Research. TA was supported by Providence Healthcare Society. We thank Ingrid Barta for histology services, and the Jack Bell Centre animal care staff.
PY - 2011
Y1 - 2011
N2 - Background: Tenocytes have been implicated in the development of tendinosis, a chronic condition commonly seen in musculoskeletal overuse syndromes. However, the relation between abnormal tenocyte morphology and early changes in the fibrillar collagen matrix has not been closely examined in vivo. Second harmonic generation (SHG) microscopy is a recently developed technique which allows examination of fibrillar collagen structures with a high degree of specificity and resolution. The goal of this study was to examine the potential utility of SHG and multiphoton excitation fluorescence (MPEF) microscopy in understanding the relation between tenocytes and their surrounding collagenous matrix in early tendon overuse lesions. Methods. Histological preparations of tendon were prepared from adult male Sprague-Dawley rats subjected to an Achilles tendon loading protocol for 12 weeks (Rat-A-PED), or from sedentary age-matched cage controls. Second harmonic generation and multiphoton excitation fluorescence were performed simultaneously on these tissue sections in at least three different areas. Results: SHG microscopy revealed an association between abnormal tenocyte morphology and morphological changes in the fibrillar collagen matrix of mechanically loaded Achilles tendons. Collagen density and organization was significantly reduced in focal micro-regions of mechanically loaded tendons. These pathological changes occurred specifically in association with altered tenocyte morphology. Normal tendons displayed a regular distribution of fibre bundles, and the average size of these bundles as determined by Gaussian analysis was 0.47 m 0.02. In comparison, fibre bundle measures from tendon regions in the vicinity of abnormal tenocytes could not be quantified due to a reduction in their regularity of distribution and orientation. Conclusions: SHG microscopy allowed high resolution detection of focal tendon abnormalities affecting the fibrillar collagen matrix. With ongoing repetitive loading, these tenocyte-associated focal collagen defects could predispose to the progression of overuse pathology.
AB - Background: Tenocytes have been implicated in the development of tendinosis, a chronic condition commonly seen in musculoskeletal overuse syndromes. However, the relation between abnormal tenocyte morphology and early changes in the fibrillar collagen matrix has not been closely examined in vivo. Second harmonic generation (SHG) microscopy is a recently developed technique which allows examination of fibrillar collagen structures with a high degree of specificity and resolution. The goal of this study was to examine the potential utility of SHG and multiphoton excitation fluorescence (MPEF) microscopy in understanding the relation between tenocytes and their surrounding collagenous matrix in early tendon overuse lesions. Methods. Histological preparations of tendon were prepared from adult male Sprague-Dawley rats subjected to an Achilles tendon loading protocol for 12 weeks (Rat-A-PED), or from sedentary age-matched cage controls. Second harmonic generation and multiphoton excitation fluorescence were performed simultaneously on these tissue sections in at least three different areas. Results: SHG microscopy revealed an association between abnormal tenocyte morphology and morphological changes in the fibrillar collagen matrix of mechanically loaded Achilles tendons. Collagen density and organization was significantly reduced in focal micro-regions of mechanically loaded tendons. These pathological changes occurred specifically in association with altered tenocyte morphology. Normal tendons displayed a regular distribution of fibre bundles, and the average size of these bundles as determined by Gaussian analysis was 0.47 m 0.02. In comparison, fibre bundle measures from tendon regions in the vicinity of abnormal tenocytes could not be quantified due to a reduction in their regularity of distribution and orientation. Conclusions: SHG microscopy allowed high resolution detection of focal tendon abnormalities affecting the fibrillar collagen matrix. With ongoing repetitive loading, these tenocyte-associated focal collagen defects could predispose to the progression of overuse pathology.
UR - http://www.scopus.com/inward/record.url?scp=79251544248&partnerID=8YFLogxK
UR - http://www.scopus.com/inward/citedby.url?scp=79251544248&partnerID=8YFLogxK
U2 - 10.1186/1471-2474-12-26
DO - 10.1186/1471-2474-12-26
M3 - Article
C2 - 21269488
AN - SCOPUS:79251544248
SN - 1471-2474
VL - 12
JO - BMC Musculoskeletal Disorders
JF - BMC Musculoskeletal Disorders
M1 - 26
ER -