Selective precipitation of rare earth and critical elements from acid mine drainage - Part I: Kinetics and thermodynamics of staged precipitation process

Behzad Vaziri Hassas, Younes Shekarian, Mohammad Rezaee

Research output: Contribution to journalArticlepeer-review

17 Scopus citations

Abstract

Critical elements (CEs) have been in the spotlight recently due to their promising role in green energy transition and high-tech developments. Secondary resources, such as acid mine drainage (AMD) are of great potential source for these elements. Selective recovery of CEs such as Al, rare earth elements (REEs), Co, and Mn from AMD is deemed viable. To design and scale up the CEs recovery process, parameters such as kinetics and other thermodynamics parameters are vital. This work determined the reaction rates for precipitation of the Al, REEs, Co, and Mn in a three-staged precipitation process. The experimental data were examined with Avrami and second-order kinetics models. Analyzing the parameters driving and controlling the precipitation showed that the mechanism in the precipitation of elements from the solution is the supersaturation of species. Furthermore, the condensation and polymerization of the metal ions with ligand molecules results in large polycation complexation and growth.

Original languageEnglish (US)
Article number106654
JournalResources, Conservation and Recycling
Volume188
DOIs
StatePublished - Jan 2023

All Science Journal Classification (ASJC) codes

  • Waste Management and Disposal
  • Economics and Econometrics

Fingerprint

Dive into the research topics of 'Selective precipitation of rare earth and critical elements from acid mine drainage - Part I: Kinetics and thermodynamics of staged precipitation process'. Together they form a unique fingerprint.

Cite this