TY - JOUR
T1 - Selenium modifies the osteoblast inflammatory stress response to bone metastatic breast cancer
AU - Chen, Yu Chi
AU - Sosnoski, Donna M.
AU - Gandhi, Ujjawal H.
AU - Novinger, Leah J.
AU - Prabhu, K. Sandeep
AU - Mastro, Andrea M.
N1 - Funding Information:
American Institute for Cancer Research (06027); with added support from National Foundation for Cancer Research, Center for Metastatic Research, University of Alabama at Birmingham to A.M.M.; National Institutes of Health (R01 DK 077152 to K.S.P.); The President’s Fund for Undergraduate Research to L.N.
PY - 2009
Y1 - 2009
N2 - Breast cancer frequently metastasizes to the skeleton resulting in bone degradation due to osteoclast activation. Metastases also downregulate differentiation and the bone-rebuilding function of osteoblasts. Moreover, cancer cells trigger osteoblast inflammatory stress responses. Pro-inflammatory mediators such as interleukin (IL)-6, monocyte chemoattractant protein-1 (MCP-1), cyclooxygenase-2 (COX-2) and inducible nitric oxide synthase (iNOS), expressed by osteoblasts (MC3T3-E1) stimulated with human breast cancer cell (MDA-MB-231) conditioned medium, are pivotal to osteoclast activation and metastasis. Given that these genes are regulated by nuclear factor-κB (NF-κB), a redox-sensitive transcription factor, we hypothesized that selenium (Se) could abrogate the inflammatory response to metastatic breast cancer cells by modulating NF-κB. Caffeic acid phenethyl ester and parthenolide inhibited NF-κB activation, as seen by gel shift assays and immunoblotting for p65 in nuclear fractions, as well as decreased production of IL-6 and MCP-1. Supplementation of MC3T3-E1 with methylseleninic acid (MSA) (0.5 μM to 4 μM) reduced the activation of NF-κB leading to a decrease in IL-6, MCP-1, COX-2 and iNOS in response to MDA-MB-231 conditioned medium. Addition of MSA to osteoblasts for as little as 15 min suppressed activation of NF-κB suggesting that short-lived active metabolites might be involved. However, brief exposure to MSA also brought about an increase in selenoprotein glutathione peroxidase 1. In summary, our data indicate that the osteoblast response to metastatic breast cancer cells is regulated by NF-κB activation, which can be effectively suppressed by MSA either through short-lived active metabolites and/or selenoproteins. Thus, Se supplementation may prevent the osteoblast inflammatory response or dampen the vicious cycle established when breast cancer cells, osteoblasts and osteoclasts interact.
AB - Breast cancer frequently metastasizes to the skeleton resulting in bone degradation due to osteoclast activation. Metastases also downregulate differentiation and the bone-rebuilding function of osteoblasts. Moreover, cancer cells trigger osteoblast inflammatory stress responses. Pro-inflammatory mediators such as interleukin (IL)-6, monocyte chemoattractant protein-1 (MCP-1), cyclooxygenase-2 (COX-2) and inducible nitric oxide synthase (iNOS), expressed by osteoblasts (MC3T3-E1) stimulated with human breast cancer cell (MDA-MB-231) conditioned medium, are pivotal to osteoclast activation and metastasis. Given that these genes are regulated by nuclear factor-κB (NF-κB), a redox-sensitive transcription factor, we hypothesized that selenium (Se) could abrogate the inflammatory response to metastatic breast cancer cells by modulating NF-κB. Caffeic acid phenethyl ester and parthenolide inhibited NF-κB activation, as seen by gel shift assays and immunoblotting for p65 in nuclear fractions, as well as decreased production of IL-6 and MCP-1. Supplementation of MC3T3-E1 with methylseleninic acid (MSA) (0.5 μM to 4 μM) reduced the activation of NF-κB leading to a decrease in IL-6, MCP-1, COX-2 and iNOS in response to MDA-MB-231 conditioned medium. Addition of MSA to osteoblasts for as little as 15 min suppressed activation of NF-κB suggesting that short-lived active metabolites might be involved. However, brief exposure to MSA also brought about an increase in selenoprotein glutathione peroxidase 1. In summary, our data indicate that the osteoblast response to metastatic breast cancer cells is regulated by NF-κB activation, which can be effectively suppressed by MSA either through short-lived active metabolites and/or selenoproteins. Thus, Se supplementation may prevent the osteoblast inflammatory response or dampen the vicious cycle established when breast cancer cells, osteoblasts and osteoclasts interact.
UR - http://www.scopus.com/inward/record.url?scp=70849087652&partnerID=8YFLogxK
UR - http://www.scopus.com/inward/citedby.url?scp=70849087652&partnerID=8YFLogxK
U2 - 10.1093/carcin/bgp227
DO - 10.1093/carcin/bgp227
M3 - Article
C2 - 19759193
AN - SCOPUS:70849087652
SN - 0143-3334
VL - 30
SP - 1941
EP - 1948
JO - Carcinogenesis
JF - Carcinogenesis
IS - 11
ER -