TY - JOUR
T1 - Self-healing behavior of high capacity metal gallium thin film and powder as anode material for Li-ion battery
AU - Luo, Fei
AU - Zheng, Jieyun
AU - Chu, Geng
AU - Liu, Bonan
AU - Zhang, Sulin
AU - Li, Hong
AU - Chen, Liquan
PY - 2015/8/15
Y1 - 2015/8/15
N2 - Alloy anode materials, such as Si, Sn, have attracted much attention due to their much higher theoretical capacities than that of the commercially used graphite electrodes. However, their commercial applications are limited because of the short cycle life due to the large volume changes and non-healable fracture during electrochemical cycling. In this work, we prepared metal Ga thin film electrodes on stainless steel substrate (diameter 1.4 cm, mass load 1.5~2 mg/cm2) to study the self-healing behavior of Ga anodes. After 25 cycles, the cells were disassembled in Ar-filled glove box and the metal Ga thin film electrodes were washed by dimethyl carbonate (DMC) to remove residual LiPF6 and then dried in the vacuum chamber for more than 2 hours before SEM analysis. Based on SEM observation and crack size statistical distribution, we found that the characteristic size of the self-healing area reduced to 34 μm after 25 cycles and gradually reduced with the increasing cycles using low-melting point metal Ga film electrodes at a temperature above the melting point of Ga. Energy dispersive spectrometer (EDS) analysis showed that there was a large amount of F, O and C at the surface of metal Ga thin film electrodes, which are considered as main components of the solid electrolyte interface (SEI) layer. The formation of the SEI layer degrades the self-healing capability of Ga metal thin films because the layer may attach on the crack surfaces after full delithiation, hindering self-healing of the Ga films. Metal Ga powder electrodes (mass load 4.3 mg/cm2) were prepared by simple liquid dispersion method. The size of the Ga metal powder was 3.43 μm, which is smaller than that of effective self-healing area. Electrochemical performance showed improved durability of the metal Ga powder electrodes compared to the metal Ga thin film electrodes. After 25 cycles, the average crack size of the metal Ga powder electrodes was 1 μm based on SEM images. This shows that the self-healing ability of metal Ga in liquid electrolyte is limited. Metal Ga is expected to be used as crack healing agent in non-liquid electrolyte systems, such as the solid-state batteries.
AB - Alloy anode materials, such as Si, Sn, have attracted much attention due to their much higher theoretical capacities than that of the commercially used graphite electrodes. However, their commercial applications are limited because of the short cycle life due to the large volume changes and non-healable fracture during electrochemical cycling. In this work, we prepared metal Ga thin film electrodes on stainless steel substrate (diameter 1.4 cm, mass load 1.5~2 mg/cm2) to study the self-healing behavior of Ga anodes. After 25 cycles, the cells were disassembled in Ar-filled glove box and the metal Ga thin film electrodes were washed by dimethyl carbonate (DMC) to remove residual LiPF6 and then dried in the vacuum chamber for more than 2 hours before SEM analysis. Based on SEM observation and crack size statistical distribution, we found that the characteristic size of the self-healing area reduced to 34 μm after 25 cycles and gradually reduced with the increasing cycles using low-melting point metal Ga film electrodes at a temperature above the melting point of Ga. Energy dispersive spectrometer (EDS) analysis showed that there was a large amount of F, O and C at the surface of metal Ga thin film electrodes, which are considered as main components of the solid electrolyte interface (SEI) layer. The formation of the SEI layer degrades the self-healing capability of Ga metal thin films because the layer may attach on the crack surfaces after full delithiation, hindering self-healing of the Ga films. Metal Ga powder electrodes (mass load 4.3 mg/cm2) were prepared by simple liquid dispersion method. The size of the Ga metal powder was 3.43 μm, which is smaller than that of effective self-healing area. Electrochemical performance showed improved durability of the metal Ga powder electrodes compared to the metal Ga thin film electrodes. After 25 cycles, the average crack size of the metal Ga powder electrodes was 1 μm based on SEM images. This shows that the self-healing ability of metal Ga in liquid electrolyte is limited. Metal Ga is expected to be used as crack healing agent in non-liquid electrolyte systems, such as the solid-state batteries.
UR - http://www.scopus.com/inward/record.url?scp=84942354219&partnerID=8YFLogxK
UR - http://www.scopus.com/inward/citedby.url?scp=84942354219&partnerID=8YFLogxK
U2 - 10.6023/A15030151
DO - 10.6023/A15030151
M3 - Article
AN - SCOPUS:84942354219
SN - 0567-7351
VL - 73
SP - 808
EP - 814
JO - Acta Chimica Sinica
JF - Acta Chimica Sinica
IS - 8
ER -