TY - GEN
T1 - Semi-Supervised Graph-to-Graph Translation
AU - Zhao, Tianxiang
AU - Tang, Xianfeng
AU - Zhang, Xiang
AU - Wang, Suhang
N1 - Publisher Copyright:
© 2020 ACM.
PY - 2020/10/19
Y1 - 2020/10/19
N2 - Graph translation is very promising research direction and has awide range of potential real-world applications. Graph is a natural structure for representing relationship and interactions, and its translation can encode the intrinsic semantic changes of relation-ships in different scenarios. However, despite its seemingly wide possibilities, usage of graph translation so far is still quite limited.One important reason is the lack of high-quality paired dataset. For example, we can easily build graphs representing peoples? shared music tastes and those representing co-purchase behavior, but a well paired dataset is much more expensive to obtain. Therefore,in this work, we seek to provide a graph translation model in the semi-supervised scenario. This task is non-trivial, because graph translation involves changing the semantics in the form of link topology and node attributes, which is difficult to capture due to the combinatory nature and inter-dependencies. Furthermore, due to the high order of freedom in graph's composition, it is difficult to assure the generalization ability of trained models. These difficulties impose a tighter requirement for the exploitation of unpaired samples. Addressing them, we propose to construct a dual representation space, where transformation is performed explicitly to model the semantic transitions. Special encoder/decoder structures are designed, and auxiliary mutual information loss is also adopted to enforce the alignment of unpaired/paired examples. We evaluate the proposed method in three different datasets.
AB - Graph translation is very promising research direction and has awide range of potential real-world applications. Graph is a natural structure for representing relationship and interactions, and its translation can encode the intrinsic semantic changes of relation-ships in different scenarios. However, despite its seemingly wide possibilities, usage of graph translation so far is still quite limited.One important reason is the lack of high-quality paired dataset. For example, we can easily build graphs representing peoples? shared music tastes and those representing co-purchase behavior, but a well paired dataset is much more expensive to obtain. Therefore,in this work, we seek to provide a graph translation model in the semi-supervised scenario. This task is non-trivial, because graph translation involves changing the semantics in the form of link topology and node attributes, which is difficult to capture due to the combinatory nature and inter-dependencies. Furthermore, due to the high order of freedom in graph's composition, it is difficult to assure the generalization ability of trained models. These difficulties impose a tighter requirement for the exploitation of unpaired samples. Addressing them, we propose to construct a dual representation space, where transformation is performed explicitly to model the semantic transitions. Special encoder/decoder structures are designed, and auxiliary mutual information loss is also adopted to enforce the alignment of unpaired/paired examples. We evaluate the proposed method in three different datasets.
UR - http://www.scopus.com/inward/record.url?scp=85095865170&partnerID=8YFLogxK
UR - http://www.scopus.com/inward/citedby.url?scp=85095865170&partnerID=8YFLogxK
U2 - 10.1145/3340531.3411977
DO - 10.1145/3340531.3411977
M3 - Conference contribution
AN - SCOPUS:85095865170
T3 - International Conference on Information and Knowledge Management, Proceedings
SP - 1863
EP - 1872
BT - CIKM 2020 - Proceedings of the 29th ACM International Conference on Information and Knowledge Management
PB - Association for Computing Machinery
T2 - 29th ACM International Conference on Information and Knowledge Management, CIKM 2020
Y2 - 19 October 2020 through 23 October 2020
ER -