Sensitive information tracking in commodity IoT

Z. Berkay Celik, Leonardo Babun, Amit K. Sikder, Hidayet Aksu, Gang Tan, Patrick McDaniel, A. Selcuk Uluagac

Research output: Chapter in Book/Report/Conference proceedingConference contribution

203 Scopus citations

Abstract

Broadly defined as the Internet of Things (IoT), the growth of commodity devices that integrate physical processes with digital connectivity has had profound effects on society-smart homes, personal monitoring devices, enhanced manufacturing and other IoT applications have changed the way we live, play, and work. Yet extant IoT platforms provide few means of evaluating the use (and potential avenues for misuse) of sensitive information. Thus, consumers and organizations have little information to assess the security and privacy risks these devices present. In this paper, we present SAINT, a static taint analysis tool for IoT applications. SAINT operates in three phases; (a) translation of platform-specific IoT source code into an intermediate representation (IR), (b) identifying sensitive sources and sinks, and (c) performing static analysis to identify sensitive data flows. We evaluate SAINT on 230 SmartThings market apps and find 138 (60%) include sensitive data flows. In addition, we demonstrate SAINT on IOTBENCH, a novel open-source test suite containing 19 apps with 27 unique data leaks. Through this effort, we introduce a rigorously grounded framework for evaluating the use of sensitive information in IoT apps-and therein provide developers, markets, and consumers a means of identifying potential threats to security and privacy.

Original languageEnglish (US)
Title of host publicationProceedings of the 27th USENIX Security Symposium
PublisherUSENIX Association
Pages1687-1704
Number of pages18
ISBN (Electronic)9781939133045
StatePublished - Jan 1 2018
Event27th USENIX Security Symposium - Baltimore, United States
Duration: Aug 15 2018Aug 17 2018

Publication series

NameProceedings of the 27th USENIX Security Symposium

Conference

Conference27th USENIX Security Symposium
Country/TerritoryUnited States
CityBaltimore
Period8/15/188/17/18

All Science Journal Classification (ASJC) codes

  • Computer Networks and Communications
  • Information Systems
  • Safety, Risk, Reliability and Quality

Fingerprint

Dive into the research topics of 'Sensitive information tracking in commodity IoT'. Together they form a unique fingerprint.

Cite this