TY - GEN
T1 - Sensitivity analysis of aero-propulsive coupling for over-wing-nacelle concepts
AU - Berguin, Steven H.
AU - Renganathan, Sudharshan Ashwin
AU - Ahuja, Jai
AU - Chen, Mengzhen
AU - Tai, Jimmy
AU - Mavris, Dimitri N.
AU - Hills, David P.
N1 - Publisher Copyright:
© 2018, American Institute of Aeronautics and Astronautics Inc, AIAA. All rights reserved.
PY - 2018
Y1 - 2018
N2 - A sensitivity analysis is performed to quantify the relative impact of perturbing a set of design variables representing an airplane configuration with Over-Wing Nacelles (OWN), operating at transonic cruise. The goal is to study the impact of perturbing the engine’s XYZ position and power setting on installation drag, engine inlet pressure recovery, and lift curve characteristics. High-fidelity Reynolds Averaged Navier-Stokes (RANS) simulations of the Common Research Model (CRM) modified with powered, over-wing nacelles are performed and dominant main effects and interactions are identified. The most dominant effect was by far the engine’s X position, but it was also found that podded OWN configurations exhibit statistically significant, aero-propulsive coupling. Specifically, certain engine locations cause changes in the flow-field that deteriorate inlet pressure recovery and, vice versa, a change in engine boundary conditions can affect installation drag. It is therefore recommended to simulate OWN concepts using a coupled MDA or MDAO approach to capture interdependencies between aerodynamics and propulsion.
AB - A sensitivity analysis is performed to quantify the relative impact of perturbing a set of design variables representing an airplane configuration with Over-Wing Nacelles (OWN), operating at transonic cruise. The goal is to study the impact of perturbing the engine’s XYZ position and power setting on installation drag, engine inlet pressure recovery, and lift curve characteristics. High-fidelity Reynolds Averaged Navier-Stokes (RANS) simulations of the Common Research Model (CRM) modified with powered, over-wing nacelles are performed and dominant main effects and interactions are identified. The most dominant effect was by far the engine’s X position, but it was also found that podded OWN configurations exhibit statistically significant, aero-propulsive coupling. Specifically, certain engine locations cause changes in the flow-field that deteriorate inlet pressure recovery and, vice versa, a change in engine boundary conditions can affect installation drag. It is therefore recommended to simulate OWN concepts using a coupled MDA or MDAO approach to capture interdependencies between aerodynamics and propulsion.
UR - http://www.scopus.com/inward/record.url?scp=85141616161&partnerID=8YFLogxK
UR - http://www.scopus.com/inward/citedby.url?scp=85141616161&partnerID=8YFLogxK
U2 - 10.2514/6.2018-1757
DO - 10.2514/6.2018-1757
M3 - Conference contribution
AN - SCOPUS:85141616161
SN - 9781624105241
T3 - AIAA Aerospace Sciences Meeting, 2018
BT - AIAA Aerospace Sciences Meeting
PB - American Institute of Aeronautics and Astronautics Inc, AIAA
T2 - AIAA Aerospace Sciences Meeting, 2018
Y2 - 8 January 2018 through 12 January 2018
ER -