Sensitivity Analysis of Fluid–Fluid Interfacial Area, Phase Saturation and Phase Connectivity on Relative Permeability Estimation Using Machine Learning Algorithms

Sanchay Mukherjee, Russell T. Johns

Research output: Contribution to journalArticlepeer-review

2 Scopus citations

Abstract

Recent studies have shown that relative permeability can be modeled as a state function which is independent of flow direction and dependent upon phase saturation (S), phase connectivity (X), and fluid–fluid interfacial area (A). This study evaluates the impact of each of the three state parameters (S, X, and A) in the estimation of relative permeability. The relative importance of the three state parameters in four separate quadrants of S-X-A space was evaluated using a machine learning algorithm (out-of-bag predictor importance method). The results show that relative permeability is sensitive to all the three parameters, S, X, and A, with varying magnitudes in each of the four quadrants at a constant value of wettability. We observe that the wetting-phase relative permeability is most sensitive to saturation, while the non-wetting phase is most sensitive to phase connectivity. Although the least important, fluid–fluid interfacial area is still important to make the relative permeability a more exact state function.

Original languageEnglish (US)
Article number5893
JournalEnergies
Volume15
Issue number16
DOIs
StatePublished - Aug 2022

All Science Journal Classification (ASJC) codes

  • Renewable Energy, Sustainability and the Environment
  • Building and Construction
  • Fuel Technology
  • Engineering (miscellaneous)
  • Energy Engineering and Power Technology
  • Energy (miscellaneous)
  • Control and Optimization
  • Electrical and Electronic Engineering

Fingerprint

Dive into the research topics of 'Sensitivity Analysis of Fluid–Fluid Interfacial Area, Phase Saturation and Phase Connectivity on Relative Permeability Estimation Using Machine Learning Algorithms'. Together they form a unique fingerprint.

Cite this